Paolo Xausa, <a href="/A378388/b378388_1.txt">Table of n, a(n) for n = 2..10000</a>
Paolo Xausa, <a href="/A378388/b378388_1.txt">Table of n, a(n) for n = 2..10000</a>
proposed
approved
editing
proposed
11.925695879998878380848926233233473255683297917928,,,...
proposed
editing
editing
proposed
Decimal expansion of the surface area of a tetrakis hexahedron with unit shorter edge length.
allocated for Paolo Xausa
Decimal expansion of the surface area of a tetrakis hexahedron
1, 1, 9, 2, 5, 6, 9, 5, 8, 7, 9, 9, 9, 8, 8, 7, 8, 3, 8, 0, 8, 4, 8, 9, 2, 6, 2, 3, 3, 2, 3, 3, 4, 7, 3, 2, 5, 5, 6, 8, 3, 2, 9, 7, 9, 1, 7, 9, 2, 8, 1, 3, 7, 1, 9, 6, 1, 1, 1, 4, 5, 1, 9, 7, 5, 5, 2, 2, 7, 7, 8, 2, 7, 0, 0, 6, 8, 2, 9, 2, 7, 9, 6, 8, 7, 6, 8, 7, 6, 8
2,3
The tetrakis hexahedron is the dual polyhedron of the truncated octahedron.
Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TetrakisHexahedron.html">Tetrakis Hexahedron</a>.
Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetrakis_hexahedron">Tetrakis hexahedron</a>.
11.925695879998878380848926233233473255683297917928,,,
First[RealDigits[16*Sqrt[5]/3, 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TetrakisHexahedron", "SurfaceArea"], 10, 100]]
allocated
nonn,cons,easy
Paolo Xausa, Nov 27 2024
approved
editing
allocating
allocated
allocated for Paolo Xausa
allocating
approved