OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
EXAMPLE
a(3) = 25 because r(3)= 1 - 2/5 + 6/25 - 4/25 = 17/25 = A124397(3)/a(3).
MAPLE
seq(denom(add((-1)^k*binomial(2*k, k)/5^k, k = 0..n)), n = 0..20); # G. C. Greubel, Dec 25 2019
MATHEMATICA
Table[Denominator[Sum[(-1)^k*(k+1)*CatalanNumber[k]/5^k, {k, 0, n}]], {n, 0, 20}] (* G. C. Greubel, Dec 25 2019 *)
PROG
(PARI) a(n) = denominator(sum(k=0, n, ((-1)^k)*binomial(2*k, k)/5^k)); \\ Michel Marcus, Aug 11 2019
(Magma) [Denominator(&+[(-1)^k*(k+1)*Catalan(k)/5^k: k in [0..n]]): n in [0..20]]; // G. C. Greubel, Dec 25 2019
(Sage) [denominator(sum((-1)^k*(k+1)*catalan_number(k)/5^k for k in (0..n))) for n in (0..20)] # G. C. Greubel, Dec 25 2019
(GAP) List([0..20], n-> DenominatorRat(Sum([0..n], k-> (-1)^k*Binomial(2*k, k)/5^k)) ); # G. C. Greubel, Dec 25 2019
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 10 2006
STATUS
approved