[go: up one dir, main page]

login
Search: a161532 -id:a161532
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = n^3 + n^2 + n + 1.
+10
36
1, 4, 15, 40, 85, 156, 259, 400, 585, 820, 1111, 1464, 1885, 2380, 2955, 3616, 4369, 5220, 6175, 7240, 8421, 9724, 11155, 12720, 14425, 16276, 18279, 20440, 22765, 25260, 27931, 30784, 33825, 37060, 40495, 44136, 47989, 52060, 56355, 60880
OFFSET
0,2
COMMENTS
a(n) = 1111 in base n.
n^3 + n^2 + n + 1 = (n^2 + 1)*(n + 1), therefore a(n) is never prime. - Alonso del Arte, Apr 22 2014
FORMULA
For n >= 2, a(n) = (n^4-1)/(n-1) = A024002(n)/A024000(n) = A002522(n)*(n+1) = A002061(n+1) + A000578(n).
G.f.: (1+5*x^2) / (1-x)^4. - Colin Barker, Jan 06 2012
a(n) = -A062158(-n). - Bruno Berselli, Jan 26 2016
a(n) = Sum_{i=0..n} 2*n*(n-i)+1. - Bruno Berselli, Jan 02 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, Jan 02 2017
a(n) = A104878(n+3,n) = A055129(4,n) for n > 0. - Mathew Englander, Jan 06 2021
E.g.f.: exp(x)*(x^3+4*x^2+3*x+1). - Nikolaos Pantelidis, Feb 06 2023
EXAMPLE
a(2) = 15 because 2^3 + 2^2 + 2 + 1 = 8 + 4 + 2 + 1 = 15.
a(3) = 40 because 3^3 + 3^2 + 3 + 1 = 27 + 9 + 3 + 1 = 40.
a(4) = 85 because 4^3 + 4^2 + 4 + 1 = 64 + 16 + 4 + 1 = 85.
From Bruno Berselli, Jan 02 2017: (Start)
The terms of the sequence are provided by the row sums of the following triangle (see the seventh formula in the previous section):
. 1;
. 3, 1;
. 9, 5, 1;
. 19, 13, 7, 1;
. 33, 25, 17, 9, 1;
. 51, 41, 31, 21, 11, 1;
. 73, 61, 49, 37, 25, 13, 1;
. 99, 85, 71, 57, 43, 29, 15, 1;
. 129, 113, 97, 81, 65, 49, 33, 17, 1;
. 163, 145, 127, 109, 91, 73, 55, 37, 19, 1;
. 201, 181, 161, 141, 121, 101, 81, 61, 41, 21, 1;
...
Columns from the first to the fifth, respectively: A058331, A001844, A056220 (after -1), A059993, A161532. Also, eighth column is A161549.
(End)
MAPLE
A053698:=n->n^3 + n^2 + n + 1; seq(A053698(n), n=0..50); # Wesley Ivan Hurt, Apr 22 2014
MATHEMATICA
Table[n^3 + n^2 + n + 1, {n, 0, 39}] (* Alonso del Arte, Apr 22 2014 *)
FromDigits["1111", Range[0, 50]] (* Paolo Xausa, May 11 2024 *)
PROG
(Magma) [n^3+n^2+n+1: n in [0..50]]; // Vincenzo Librandi, May 01, 2011
(PARI) Vec((1 + 5*x^2) / (1 - x)^4 + O(x^50)) \\ Colin Barker, Jan 02 2017
(Python) def a(n): return (n**3+n**2+n+1) # Torlach Rush, May 08 2024
CROSSREFS
Cf. A237627 (subset of semiprimes).
Cf. A056106 (first differences).
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Mar 23 2000
STATUS
approved
28-gonal numbers: a(n) = n*(13*n - 12).
+10
14
0, 1, 28, 81, 160, 265, 396, 553, 736, 945, 1180, 1441, 1728, 2041, 2380, 2745, 3136, 3553, 3996, 4465, 4960, 5481, 6028, 6601, 7200, 7825, 8476, 9153, 9856, 10585, 11340, 12121, 12928, 13761, 14620, 15505, 16416, 17353, 18316, 19305, 20320, 21361, 22428
OFFSET
0,3
COMMENTS
The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]
These are also the star 14-gonal numbers: a(n) = A051866(n) + 14*A000217(n-1). Luciano Ancora, Apr 04 2015
FORMULA
a(n+1) = a(n) + 26*n + 1. - Vincenzo Librandi, Nov 30 2010
a(n) = A000217(n) + 25*A000217(n-1). - Luciano Ancora, Apr 04 2015
Product_{n>=2} (1 - 1/a(n)) = 13/14. - Amiram Eldar, Jan 22 2021
E.g.f.: exp(x)*(x + 13*x^2). - Nikolaos Pantelidis, Feb 05 2023
EXAMPLE
G.f. = x + 28*x^2 + 81*x^3 + 160*x^4 + 265*x^5 + 396*x^6 + 553*x^7 + ...
MATHEMATICA
lst={}; Do[a=13*n^2+14*n+1; AppendTo[lst, a], {n, 0, 5!}]; lst
Table[n*(13*n - 12), {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
PROG
(Magma) [ (n+1)*(13*n+1): n in[0..50] ];
(PARI) {a(n) = n*(13*n - 12)}; /* Michael Somos, Dec 07 2016 */
KEYWORD
easy,nonn
AUTHOR
Pierre Gayet, Jun 22 2009
EXTENSIONS
Edited by N. J. A. Sloane, Dec 07 2016 at the suggestion of Daniel Sterman.
Definition simplified by Omar E. Pol, Aug 10 2018
STATUS
approved
a(n) = 2*n^2 + 14*n + 1.
+10
7
1, 17, 37, 61, 89, 121, 157, 197, 241, 289, 341, 397, 457, 521, 589, 661, 737, 817, 901, 989, 1081, 1177, 1277, 1381, 1489, 1601, 1717, 1837, 1961, 2089, 2221, 2357, 2497, 2641, 2789, 2941, 3097, 3257, 3421, 3589, 3761, 3937, 4117, 4301, 4489, 4681, 4877, 5077
OFFSET
0,2
COMMENTS
The defining formula can be regarded as an approximation and simplification of the expansion/propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition/concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]
FORMULA
a(n) = a(n-1) + 4*n + 12 (with a(0)=1). - Vincenzo Librandi, Nov 30 2010
G.f.: (1 + 14*x - 11*x^2)/(1-x)^3. - Vincenzo Librandi, Nov 08 2014
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: (1 + 16*x + 2*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
lst={}; Do[a=2*n^2+14*n+1; AppendTo[lst, a], {n, 0, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 13 2009 *)
CoefficientList[Series[(1 + 14 x - 11 x^2) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Nov 08 2014 *)
Table[2n^2+14n+1, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 17, 37}, 50] (* Harvey P. Dale, Jul 14 2018 *)
PROG
(Magma) [ 2*n^2+14*n+1: n in [0..50] ];
(PARI) Vec((1+14*x-11*x^2)/(1-x)^3 + O(x^100)) \\ Colin Barker, Nov 08 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Pierre Gayet, Jun 13 2009
EXTENSIONS
More terms from Vladimir Joseph Stephan Orlovsky, Jun 13 2009
STATUS
approved
a(n) = 13*n^2 + 10*n + 1.
+10
7
1, 24, 73, 148, 249, 376, 529, 708, 913, 1144, 1401, 1684, 1993, 2328, 2689, 3076, 3489, 3928, 4393, 4884, 5401, 5944, 6513, 7108, 7729, 8376, 9049, 9748, 10473, 11224, 12001, 12804, 13633, 14488, 15369, 16276, 17209, 18168, 19153, 20164
OFFSET
0,2
COMMENTS
The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]
FORMULA
a(n) = a(n-1) + 26*n - 3 (with a(0)=1). - Vincenzo Librandi, Nov 30 2010
From Bruno Berselli, Dec 12 2011: (Start)
G.f.: (1 + 21*x + 4*x^2)/(1-x)^3.
a(n-1) = A202141(n) - 1 with a(-1)=4. (End)
E.g.f.: exp(x)*(1 + 23*x + 13*x^2). - Stefano Spezia, Oct 21 2024
MATHEMATICA
Table[13n^2+10n+1, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 24, 73}, 40] (* Harvey P. Dale, Nov 06 2014 *)
PROG
(Magma) [ 13*n^2+10*n+1: n in [0..50] ];
(PARI) a(n)=13*n^2+10*n+1 \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
AUTHOR
Pierre Gayet, Jun 14 2009
STATUS
approved
a(n) = 8*n^2 + 20*n + 1.
+10
6
1, 29, 73, 133, 209, 301, 409, 533, 673, 829, 1001, 1189, 1393, 1613, 1849, 2101, 2369, 2653, 2953, 3269, 3601, 3949, 4313, 4693, 5089, 5501, 5929, 6373, 6833, 7309, 7801, 8309, 8833, 9373, 9929, 10501, 11089, 11693, 12313, 12949, 13601, 14269, 14953, 15653, 16369
OFFSET
0,2
COMMENTS
The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - (Translation of a comment in French sent by P. Gayet)
FORMULA
a(n) = a(n-1) + 16*n + 12 (with a(0)=1). - Vincenzo Librandi, Nov 30 2010
From Elmo R. Oliveira, Oct 22 2024: (Start)
G.f.: (1 + 26*x - 11*x^2)/(1 - x)^3.
E.g.f.: (1 + 28*x + 8*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
PROG
(Magma) [ 8*n^2+20*n+1: n in [0..50] ];
(PARI) a(n)=8*n^2+20*n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Pierre Gayet, Jun 14 2009
STATUS
approved
a(n) = 5*n^2 + 20*n + 1.
+10
6
1, 26, 61, 106, 161, 226, 301, 386, 481, 586, 701, 826, 961, 1106, 1261, 1426, 1601, 1786, 1981, 2186, 2401, 2626, 2861, 3106, 3361, 3626, 3901, 4186, 4481, 4786, 5101, 5426, 5761, 6106, 6461, 6826, 7201, 7586, 7981, 8386, 8801, 9226, 9661, 10106, 10561, 11026
OFFSET
0,2
COMMENTS
The defining formula can be regarded as an approximation and simplification of the expansion / propagation of native hydrophytes on the surface of stagnant waters in orthogonal directions; absence of competition / concurrence and of retrogression is assumed, mortality is taken into account. - [Translation of a comment in French sent by Pierre Gayet]
FORMULA
a(n) = a(n-1) + 10*n + 15 (with a(0)=1). - Vincenzo Librandi, Dec 02 2010
G.f.: (14*x^2 - 23*x - 1)/(x - 1)^3. - Harvey P. Dale, May 07 2023
From Elmo R. Oliveira, Oct 25 2024: (Start)
E.g.f.: (5*x^2 + 25*x + 1)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
MATHEMATICA
lst={}; Do[a=5*n^2+20*n+1; AppendTo[lst, a], {n, 0, 5!}]; lst
Table[5n^2+20n+1, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {1, 26, 61}, 40] (* or *) CoefficientList[Series[(14x^2-23x-1)/(x-1)^3, {x, 0, 40}], x] (* Harvey P. Dale, May 07 2023 *)
PROG
(Magma) [ 5*n^2+20*n+1: n in [0..50] ];
(PARI) a(n)=5*n^2+20*n+1 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Pierre Gayet, Jul 01 2009
STATUS
approved
Partial sums of A140091.
+10
6
0, 6, 21, 48, 90, 150, 231, 336, 468, 630, 825, 1056, 1326, 1638, 1995, 2400, 2856, 3366, 3933, 4560, 5250, 6006, 6831, 7728, 8700, 9750, 10881, 12096, 13398, 14790, 16275, 17856, 19536, 21318, 23205, 25200, 27306, 29526, 31863, 34320, 36900, 39606, 42441, 45408, 48510
OFFSET
0,2
COMMENTS
After 0, this sequence is the third column of the array in A185874.
Sequence is related to A051744 by A051744(n) = n*a(n)/3 - Sum_{i=0..n-1} a(i) for n>0.
FORMULA
O.g.f.: 3*x*(2 - x)/(1 - x)^4.
E.g.f.: x*(12 + 9*x + x^2)*exp(x)/2.
a(n) = n*(n + 1)*(n + 5)/2.
a(n) = Sum_{i=0..n} n*(n - i) + 5*i, that is: a(n) = A002411(n) + A028895(n). More generally, Sum_{i=0..n} n*(n - i) + k*i = n*(n + 1)*(n + k)/2.
a(n) = 3*A005581(n+1).
a(n+1) - 3*a(n) + 3*a(n-1) = 3*A105163(n) for n>0.
From Amiram Eldar, Jan 06 2021: (Start)
Sum_{n>=1} 1/a(n) = 163/600.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/5 - 253/600. (End)
EXAMPLE
The sequence is also provided by the row sums of the following triangle (see the fourth formula above):
. 0;
. 1, 5;
. 4, 7, 10;
. 9, 11, 13, 15;
. 16, 17, 18, 19, 20;
. 25, 25, 25, 25, 25, 25;
. 36, 35, 34, 33, 32, 31, 30;
. 49, 47, 45, 43, 41, 39, 37, 35;
. 64, 61, 58, 55, 52, 49, 46, 43, 40;
. 81, 77, 73, 69, 65, 61, 57, 53, 49, 45, etc.
First column is A000290.
Second column is A027690.
Third column is included in A189834.
Main diagonal is A008587; other parallel diagonals: A016921, A017029, A017077, A017245, etc.
Diagonal 1, 11, 25, 43, 65, 91, 121, ... is A161532.
MATHEMATICA
Table[n (n + 1) (n + 5)/2, {n, 0, 50}]
LinearRecurrence[{4, -6, 4, -1}, {0, 6, 21, 48}, 50] (* Harvey P. Dale, Jul 18 2019 *)
PROG
(PARI) vector(50, n, n--; n*(n+1)*(n+5)/2)
(Sage) [n*(n+1)*(n+5)/2 for n in (0..50)]
(Magma) [n*(n+1)*(n+5)/2: n in [0..50]];
CROSSREFS
Cf. similar sequences of the type n*(n+1)*(n+k)/2: A002411 (k=0), A006002 (k=1), A027480 (k=2), A077414 (k=3, with offset 1), A212343 (k=4, without the initial 0), this sequence (k=5).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 13 2016
STATUS
approved
a(n) = 2*n^2 - 4*n + 4.
+10
6
2, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234, 4420, 4610, 4804, 5002, 5204, 5410, 5620
OFFSET
1,1
COMMENTS
Numbers n such that 2*n - 4 is a perfect square.
For n > 2, the number of square a(n)-gonal numbers is finite. - Muniru A Asiru, Oct 16 2016
FORMULA
a(n) = 2*A002522(n-1).
G.f.: 2*x*(1 - x + 2*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = (1 + Pi*coth(Pi))/4 = 1.038337023734290587067... . - Vaclav Kotesovec, Apr 11 2016
a(n) = A005893(n-1), n > 1. - R. J. Mathar, Apr 12 2016
a(n) = 2 + 2*(n-1)^2. - Tyler Skywalker, Jul 21 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 - x + 2) - 2).
a(n) = 2*A160457(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
EXAMPLE
a(1) = 2*1^2 - 4*1 + 4 = 2.
MATHEMATICA
Table[2 n^2 - 4 n + 4, {n, 54}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3, -3, 1}, {2, 4, 10}, 60] (* Harvey P. Dale, Jul 18 2023 *)
PROG
(Magma) [ 2*n^2 - 4*n + 4: n in [1..60]];
(Magma) [ n: n in [1..6000] | IsSquare(2*n-4)];
(PARI) x='x+O('x^99); Vec(2*x*(1-x+2*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
(PARI) a(n)=2*n^2-4*n+4 \\ Charles R Greathouse IV, Apr 11 2016
CROSSREFS
Cf. A002522, numbers n such that 2*n + k is a perfect square: no sequence (k = -9), A255843 (k = -8), A271649 (k = -7), A093328 (k = -6), A097080 (k = -5), this sequence (k = -4), A051890 (k = -3), A058331 (k = -2), A001844 (k = -1), A001105 (k = 0), A046092 (k = 1), A056222 (k = 2), A142463 (k = 3), A054000 (k = 4), A090288 (k = 5), A268581 (k = 6), A059993 (k = 7), (-1)*A147973 (k = 8), A139570 (k = 9), A271625 (k = 10), A222182 (k = 11), A152811 (k = 12), A181510 (k = 13), A161532 (k = 14), no sequence (k = 15).
KEYWORD
nonn,easy,changed
AUTHOR
STATUS
approved
a(n) = 2*n^2 + 4*n - 3.
+10
5
3, 13, 27, 45, 67, 93, 123, 157, 195, 237, 283, 333, 387, 445, 507, 573, 643, 717, 795, 877, 963, 1053, 1147, 1245, 1347, 1453, 1563, 1677, 1795, 1917, 2043, 2173, 2307, 2445, 2587, 2733, 2883, 3037, 3195, 3357, 3523, 3693, 3867, 4045, 4227, 4413, 4603, 4797, 4995, 5197, 5403, 5613, 5827
OFFSET
1,1
COMMENTS
Numbers n such that 2*n + 10 is a perfect square.
FORMULA
G.f.: x*(3 + 4*x - 3*x^2)/(1 - x)^3. - Ilya Gutkovskiy, Apr 11 2016
Sum_{n>=1} 1/a(n) = 13/30 - Pi*cot(sqrt(5/2)*Pi)/(2*sqrt(10)) = 0.5627678459924... . - Vaclav Kotesovec, Apr 11 2016
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: exp(x)*(2*x^2 + 6*x - 3) + 3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
EXAMPLE
a(1) = 2*1^2 + 4*1 - 3 = 3.
MATHEMATICA
Table[2 n^2 + 4 n - 3, {n, 53}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3, -3, 1}, {3, 13, 27}, 60] (* Harvey P. Dale, Jun 08 2023 *)
PROG
(Magma) [ 2*n^2 + 4*n - 3: n in [1..60]];
(Magma) [ n: n in [1..6000] | IsSquare(2*n+10)];
(PARI) x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ Altug Alkan, Apr 11 2016
CROSSREFS
Cf. A201713.
Numbers h such that 2*h + k is a perfect square: A294774 (k=-9), A255843 (k=-8), A271649 (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), this sequence (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).
KEYWORD
nonn,easy,changed
AUTHOR
STATUS
approved
a(n) = 2*(n^2 - n + 2).
+10
4
4, 8, 16, 28, 44, 64, 88, 116, 148, 184, 224, 268, 316, 368, 424, 484, 548, 616, 688, 764, 844, 928, 1016, 1108, 1204, 1304, 1408, 1516, 1628, 1744, 1864, 1988, 2116, 2248, 2384, 2524, 2668, 2816, 2968, 3124, 3284, 3448, 3616, 3788, 3964, 4144, 4328, 4516, 4708, 4904, 5104, 5308, 5516
OFFSET
1,1
COMMENTS
Numbers n such that 2n - 7 is a perfect square.
Galois numbers for three-dimensional vector space, defined as the total number of subspaces in a three-dimensional vector space over GF(n-1), when n-1 is a power of a prime. - Artur Jasinski, Aug 31 2016, corrected by Robert Israel, Sep 23 2016
FORMULA
a(n) = 4*A000124(n).
a(n) = 2*A014206(n).
a(n) = A137882(n), n > 1. - R. J. Mathar, Apr 12 2016
Sum_{n>=1} 1/a(n) = tanh(sqrt(7)*Pi/2)*Pi/(2*sqrt(7)). - Amiram Eldar, Jul 30 2024
EXAMPLE
a(1) = 2*(1^2 - 1 + 2) = 4.
MAPLE
A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # Wesley Ivan Hurt, Aug 31 2016
MATHEMATICA
Table[2 (n^2 - n + 2), {n, 53}] (* or *)
Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)
Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* Michael De Vlieger, Apr 11 2016 *)
LinearRecurrence[{3, -3, 1}, {4, 8, 16}, 60] (* Harvey P. Dale, Jun 14 2022 *)
PROG
(Magma) [ 2*n^2 - 2*n + 4: n in [1..60]];
(Magma) [ n: n in [1..6000] | IsSquare(2*n-7)];
(PARI) a(n)=2*(n^2-n+2) \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Numbers h such that 2*h + k is a perfect square: no sequence (k=-9), A255843 (k=-8), this sequence (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), A271625 (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Search completed in 0.021 seconds