[go: up one dir, main page]

login
A051866
14-gonal (or tetradecagonal) numbers: a(n) = n*(6*n-5).
29
0, 1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, 804, 949, 1106, 1275, 1456, 1649, 1854, 2071, 2300, 2541, 2794, 3059, 3336, 3625, 3926, 4239, 4564, 4901, 5250, 5611, 5984, 6369, 6766, 7175, 7596, 8029, 8474, 8931, 9400, 9881, 10374
OFFSET
0,3
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 14, ... and the parallel line from 1, in the direction 1, 39, ..., in the square spiral whose vertices are the generalized 14-gonal numbers A195818. Also sequence found by reading the segment (0, 1) together with the line from 1, in the direction 1, 14, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Jul 18 2012
After 0, partial sums of A017533. - Bruno Berselli, Sep 11 2013
This is also a star heptagonal number: a(n) = A000566(n) + 7*A000217(n-1). - Luciano Ancora, Mar 30 2015
Starting with offset 1, this is the binomial transform of (1, 13, 12, 0, 0, 0, ...). - Gary W. Adamson, Jul 29 2015
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
Elena Deza and Michel Marie Deza, Figurate numbers, World Scientific Publishing, 2012, page 6.
FORMULA
G.f.: x*(1+11*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 12*n + a(n-1) - 11, with n > 0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
a(n) = A033568(n) - 1. - Omar E. Pol, Jul 18 2012
a(12*a(n)+67*n+1) = a(12*a(n) + 67*n) + a(12*n + 1). - Vladimir Shevelev, Jan 24 2014
From Amiram Eldar, Oct 20 2020: (Start)
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi + log(432))/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + 2*sqrt(3)*arccoth(sqrt(3)) - log(2))/5. (End)
Product_{n>=2} (1 - 1/a(n)) = 6/7. - Amiram Eldar, Jan 21 2021
E.g.f.: exp(x)*x*(1 + 6*x). - Stefano Spezia, Jun 08 2021
MAPLE
A051866 := proc(n) n*(6*n-5) ; end proc: seq(A051866(n), n=0..30) ; # R. J. Mathar, Feb 05 2011
MATHEMATICA
Table[n*(6*n - 5), {n, 0, 100}] (* Robert Price, Oct 11 2018 *)
PROG
(PARI) a(n)=n*(6*n-5); \\ Joerg Arndt, Feb 01 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 15 1999
STATUS
approved