[go: up one dir, main page]

login
Search: a144300 -id:a144300
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of integer partitions of n of whose permutations do not all have distinct runs.
+0
14
0, 0, 0, 0, 1, 2, 3, 6, 11, 16, 24, 36, 52, 73, 101, 135, 184, 244, 321, 418, 543, 694, 889, 1127, 1427, 1789, 2242, 2787, 3463, 4276, 5271, 6465, 7921, 9655, 11756, 14254, 17262, 20830, 25102, 30152, 36172, 43270, 51691, 61594, 73300, 87023, 103189, 122099, 144296, 170193, 200497
OFFSET
0,6
LINKS
FORMULA
a(n) = A000041(n) - A351204(n). - Andrew Howroyd, Jan 27 2024
EXAMPLE
The a(4) = 1 through a(9) = 16 partitions:
(211) (221) (411) (322) (332) (441)
(311) (2211) (331) (422) (522)
(21111) (511) (611) (711)
(3211) (3221) (3321)
(22111) (3311) (4221)
(31111) (4211) (4311)
(22211) (5211)
(32111) (22221)
(41111) (32211)
(221111) (33111)
(2111111) (42111)
(51111)
(222111)
(321111)
(2211111)
(3111111)
For example, the partition x = (2,1,1,1,1) has the permutation (1,1,2,1,1), with runs (1,1), (2), (1,1), which are not all distinct, so x is counted under a(6).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], MemberQ[Permutations[#], _?(!UnsameQ@@Split[#]&)]&]], {n, 0, 15}]
PROG
(Python)
from sympy.utilities.iterables import partitions
from itertools import permutations, groupby
from collections import Counter
def A351203(n):
c = 0
for s, p in partitions(n, size=True):
for q in permutations(Counter(p).elements(), s):
if max(Counter(tuple(g) for k, g in groupby(q)).values(), default=0) > 1:
c += 1
break
return c # Chai Wah Wu, Oct 16 2023
CROSSREFS
The version for run-lengths instead of runs is A144300.
The version for normal multisets is A283353.
The Heinz numbers of these partitions are A351201.
The complement is counted by A351204.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A297770 counts distinct runs in binary expansion.
A003242 counts anti-run compositions, ranked by A333489.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 12 2022
EXTENSIONS
a(26) onwards from Andrew Howroyd, Jan 27 2024
STATUS
approved
a(n) = n*d(n), where d(n) = number of divisors of n (A000005).
+0
110
1, 4, 6, 12, 10, 24, 14, 32, 27, 40, 22, 72, 26, 56, 60, 80, 34, 108, 38, 120, 84, 88, 46, 192, 75, 104, 108, 168, 58, 240, 62, 192, 132, 136, 140, 324, 74, 152, 156, 320, 82, 336, 86, 264, 270, 184, 94, 480, 147, 300, 204, 312, 106, 432, 220, 448, 228, 232, 118
OFFSET
1,2
COMMENTS
Dirichlet convolution of sigma(n) (A000203) with phi(n) (A000010). - Michael Somos, Jun 08 2000
Dirichlet convolution of f(n)=n with itself. See the Apostol reference for Dirichlet convolutions. - Wolfdieter Lang, Sep 09 2008
Sum of all parts of all partitions of n into equal parts. - Omar E. Pol, Jan 18 2013
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pp. 29 ff.
LINKS
J. Bourgain, S. V. Konyagin and I. E. Shparlinski, Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithms, Int. Math. Res. Notices, 2008 (2008), Art. ID rnn 090, 1-29.
Jean Bourgain, Sergei Konyagin and Igor Shparlinski. Distribution on elements of cosets of small subgroups and applications, arXiv:1103.0567 [math.NT], Mar 2 2011.
Mikhail R. Gabdullin and Vitalii V. Iudelevich, Numbers of the form kf(k), arXiv:2201.09287 [math.NT] (2022).
Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 147. [Broken link?]
Paul Pollack, Analytic and Combinatorial Number Theory Course Notes, p. 147.
FORMULA
Dirichlet g.f.: zeta(s-1)^2.
G.f.: Sum_{n>=1} n*x^n/(1-x^n)^2. - Vladeta Jovovic, Dec 30 2001
Sum_{k=1..n} sigma(gcd(n, k)). Multiplicative with a(p^e) = (e+1)*p^e. - Vladeta Jovovic, Oct 30 2001
Equals A127648 * A127093 * the harmonic series, [1/1, 1/2, 1/3, ...]. - Gary W. Adamson, May 10 2007
Equals row sums of triangle A127528. - Gary W. Adamson, May 21 2007
a(n) = n*A000005(n) = A066186(n) - n*(A000041(n) - A000005(n)) = A066186(n) - n*A144300(n). - Omar E. Pol, Jan 18 2013
a(n) = A000203(n) * A240471(n) + A106315(n). - Reinhard Zumkeller, Apr 06 2014
L.g.f.: Sum_{k>=1} x^k/(1 - x^k) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 13 2017
a(n) = Sum_{d|n} A018804(d). - Amiram Eldar, Jun 23 2020
a(n) = Sum_{d|n} phi(d)*sigma(n/d). - Ridouane Oudra, Jan 21 2021
G.f.: Sum_{n >= 1} q^(n^2)*(n^2 + 2*n*q^n - n^2*q^(2*n))/(1 - q^n)^2. - Peter Bala, Jan 22 2021
a(n) = Sum_{k=1..n} sigma(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ x/sqrt(log x). That is, there are 0 < A < B such that Ax/sqrt(log x) < f(x) < Bx/sqrt(log x). - Charles R Greathouse IV, Mar 15 2022
Sum_{k=1..n} a(k) ~ n^2*log(n)/2 + (gamma - 1/4)*n^2, where gamma is Euler's constant (A001620). - Amiram Eldar, Oct 25 2022
Mobius transform of A060640. - R. J. Mathar, Feb 07 2023
EXAMPLE
For n = 6 the partitions of 6 into equal parts are [6], [3, 3], [2, 2, 2], [1, 1, 1, 1, 1, 1]. The sum of all parts is 6 + 3 + 3 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 24 equalling 6 times the number of divisors of 6, so a(6) = 24. - Omar E. Pol, May 08 2021
MAPLE
with(numtheory): A038040 := n->tau(n)*n;
MATHEMATICA
a[n_] := DivisorSigma[0, n]*n; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Sep 03 2012 *)
PROG
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, 1/(1-p*X)^2)[n])
(PARI) a(n)=if(n<1, 0, polcoeff(sum(k=1, n, k*x^k/(x^k-1)^2, x*O(x^n)), n)) /* Michael Somos, Jan 29 2005 */
(PARI) a(n) = n*numdiv(n); \\ Michel Marcus, Oct 24 2020
(MuPAD) n*numlib::tau (n)$ n=1..90 // Zerinvary Lajos, May 13 2008
(Haskell)
a038040 n = a000005 n * n -- Reinhard Zumkeller, Jan 21 2014
(Python)
from sympy import divisor_count as d
def a(n): return n*d(n)
print([a(n) for n in range(1, 60)]) # Michael S. Branicky, Mar 15 2022
CROSSREFS
Cf. A038044, A143127 (partial sums), A328722 (Dirichlet inverse).
Column 1 of A329323.
KEYWORD
nonn,easy,mult
STATUS
approved
Number of integer partitions of n that are not constant but satisfy (mean) = (median) = (mode), assuming there is a unique mode.
+0
9
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 4, 0, 3, 3, 7, 0, 12, 0, 18, 12, 9, 0, 50, 12, 14, 33, 54, 0, 115, 0, 92, 75, 31, 99, 323, 0, 45, 162, 443, 0, 507, 0, 467, 732, 88, 0, 1551, 274, 833, 627, 1228, 0, 2035, 1556, 2859, 1152, 221, 0, 9008, 0, 295, 4835, 5358
OFFSET
1,12
COMMENTS
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
EXAMPLE
The a(8) = 1 through a(18) = 12 partitions:
3221 . 32221 . 4332 . 3222221 43332 5443 . 433332
5331 3322211 53331 6442 443331
322221 4222211 63321 7441 533322
422211 32222221 533331
33222211 543321
42222211 633321
52222111 733311
322222221
332222211
422222211
432222111
522222111
MATHEMATICA
modes[ms_]:=Select[Union[ms], Count[ms, #]>=Max@@Length/@Split[ms]&];
Table[Length[Select[IntegerPartitions[n], !SameQ@@#&&{Mean[#]}=={Median[#]}==modes[#]&]], {n, 30}]
CROSSREFS
Non-constant partitions are counted by A144300, ranks A024619.
This is the non-constant case of A363719, ranks A363727.
These partitions have ranks A363729.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 23 2023
STATUS
approved
Number of 1 X (n+1) 0..1 arrays with every row least squares fitting to a positive-slope straight line and every column least squares fitting to a zero- or positive-slope straight line, with a single point array taken as having zero slope.
+0
8
1, 2, 6, 12, 28, 54, 119, 230, 488, 948, 1979, 3860, 7978, 15624, 32072, 63014, 128746, 253588, 516346, 1019072, 2069590, 4091174, 8291746, 16412668, 33210428, 65808044, 132985161, 263755984, 532421062, 1056789662, 2131312530, 4233176854
OFFSET
1,2
COMMENTS
From Gus Wiseman, Jun 16 2023: (Start)
Also appears to be the number of integer compositions of n + 2 with weighted sum greater than reverse-weighted sum, where the weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i * y_i, and the reverse is Sum_{i=1..k} i * y_{k-i+1}. The a(1) = 1 through a(4) = 12 compositions are:
(21) (31) (32) (42)
(211) (41) (51)
(221) (231)
(311) (312)
(1211) (321)
(2111) (411)
(1311)
(2121)
(2211)
(3111)
(12111)
(21111)
The version for partitions is A144300, strict A111133.
(End)
LINKS
EXAMPLE
Some solutions for n=3:
0 1 0 1 0 1 1 1 0 0 1 0 0 0 1 1 0 0 0 1
CROSSREFS
For >= instead of > we have A222855.
The case of equality is A222955.
Row 1 of A222969.
A053632 counts compositions by weighted sum (or reverse-weighted sum).
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, reverse A318283.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 10 2013
STATUS
approved
Number of integer partitions of n where 2*(number of distinct parts) >= (number of parts).
+0
15
1, 1, 2, 2, 4, 6, 8, 11, 15, 20, 30, 38, 49, 65, 83, 108, 139, 178, 224, 286, 358, 437, 550, 684, 837, 1037, 1269, 1553, 1889, 2295, 2770, 3359, 4035, 4843, 5808, 6951, 8312, 9902, 11752, 13958, 16531, 19541, 23037, 27162, 31911, 37488, 43950, 51463, 60127, 70229
OFFSET
0,3
LINKS
EXAMPLE
The a(1) = 1 through a(7) = 11 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(31) (41) (42) (52)
(211) (221) (51) (61)
(311) (321) (322)
(2111) (411) (331)
(2211) (421)
(3111) (511)
(2221)
(3211)
(4111)
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>=0, 1, 0),
`if`(i<1, 0, add(b(n-i*j, i-1, t+`if`(j>0, 2, 0)-j), j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..50); # Alois P. Heinz, Mar 19 2023
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], 2*Length[Union[#]]>=Length[#]&]], {n, 0, 30}]
CROSSREFS
The complement is counted by A360254, ranks A360558.
These partitions have ranks A361395.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, reverse A058398.
A067538 counts partitions with integer mean, strict A102627.
A116608 counts partitions by number of distinct parts.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 17 2023
STATUS
approved
Number of integer partitions of n whose first differences have mean -1.
+0
0
0, 0, 0, 1, 0, 2, 1, 3, 2, 5, 4, 8, 7, 12, 12, 19, 19, 29, 31, 43, 48, 65, 73, 97, 110, 142, 164, 208, 240, 301, 350, 432, 504, 617, 719, 874, 1019, 1228, 1434, 1717, 2001, 2385, 2778, 3292, 3831, 4522, 5252, 6177, 7164, 8392, 9722, 11352, 13125, 15283, 17643
OFFSET
0,6
COMMENTS
These are partitions where the first part minus the last part is the number of parts minus 1.
EXAMPLE
The a(3) = 1 through a(11) = 8 partitions:
(21) . (32) (321) (43) (422) (54) (442) (65)
(311) (331) (4211) (432) (4321) (533)
(4111) (4221) (4411) (4331)
(4311) (52111) (4421)
(51111) (5222)
(52211)
(53111)
(611111)
For example, the partition y = (4,2,2,1) has first differences (-2,0,-1), with mean -1, so y is counted under a(9).
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Mean[Differences[#]]==-1&]], {n, 0, 30}]
CROSSREFS
For mean 0 we have A032741.
The 0-appended version is A047993.
For any negative mean we have A144300.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A067538 counts partitions with integer mean, ranks A316413.
A326567/A326568 gives mean of prime indices, conjugate A326839/A326840.
A360614/A360615 gives mean of 0-appended first differences of prime indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 13 2023
STATUS
approved
Number of partitions p of n such that (number of distinct parts of p) <= max(p) - min(p).
+0
19
0, 0, 0, 0, 1, 2, 4, 7, 12, 17, 27, 38, 54, 75, 104, 137, 187, 245, 322, 418, 542, 691, 887, 1121, 1417, 1777, 2228, 2767, 3441, 4247, 5235, 6424, 7871, 9594, 11688, 14173, 17168, 20723, 24979, 30008, 36010, 43085, 51479, 61357, 73032, 86718, 102852, 121718
OFFSET
0,6
COMMENTS
From Gus Wiseman, Jun 26 2022: (Start)
Also the number of partitions of n with at least one gap, i.e., partitions whose parts do not form a contiguous interval. These partitions are ranked by A073492. For example, the a(0) = 0 through a(8) = 12 partitions are:
. . . . (31) (41) (42) (52) (53)
(311) (51) (61) (62)
(411) (331) (71)
(3111) (421) (422)
(511) (431)
(4111) (521)
(31111) (611)
(3311)
(4211)
(5111)
(41111)
(311111)
Also the number of non-constant partitions of n with a repeated non-maximal part, ranked by A065201. The a(0) = 0 through a(8) = 12 partitions are:
. . . . (211) (311) (411) (322) (422)
(2111) (2211) (511) (611)
(3111) (3211) (3221)
(21111) (4111) (3311)
(22111) (4211)
(31111) (5111)
(211111) (22211)
(32111)
(41111)
(221111)
(311111)
(2111111)
(End)
FORMULA
a(n) + A034296(n) = A000041(n) for n >= 1.
EXAMPLE
a(6) counts these 4 partitions: 51, 42, 411, 3111.
MATHEMATICA
z = 60; d[p_] := d[p] = Length[DeleteDuplicates[p]]; f[p_] := f[p] = Max[p] - Min[p]; g[n_] := g[n] = IntegerPartitions[n];
Table[Count[g[n], p_ /; d[p] < f[p]], {n, 0, z}] (*A239954*)
Table[Count[g[n], p_ /; d[p] <= f[p]], {n, 0, z}] (*A239955*)
Table[Count[g[n], p_ /; d[p] == f[p]], {n, 0, z}] (*A239956*)
Table[Count[g[n], p_ /; d[p] > f[p]], {n, 0, z}] (*A034296*)
Table[Count[g[n], p_ /; d[p] >= f[p]], {n, 0, z}] (*A239958*)
(* second program *)
Table[Length[Select[IntegerPartitions[n], Min@@Differences[#]<-1&]], {n, 0, 30}] (* Gus Wiseman, Jun 26 2022 *)
CROSSREFS
The complement is counted by A034296 (strict A137793), ranked by A073491.
These partitions are ranked by A073492, conjugate A065201.
Applying the condition to the conjugate gives A350839, ranked by A350841.
A000041 counts integer partitions, strict A000009.
A090858 counts partitions with a single hole, ranked by A325284.
A116931 counts partitions with differences != -1, strict A003114.
A116932 counts partitions with differences != -1 or -2, strict A025157.
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 30 2014
STATUS
approved
Number of partitions of n that contain at least one composite part.
+0
3
0, 0, 0, 0, 1, 1, 3, 4, 8, 12, 19, 27, 41, 56, 80, 109, 150, 199, 268, 350, 461, 596, 771, 984, 1258, 1589, 2007, 2514, 3145, 3905, 4846, 5973, 7356, 9010, 11020, 13418, 16315, 19756, 23890, 28788, 34639, 41548, 49767, 59441, 70899, 84354, 100221, 118803, 140645, 166153, 196035, 230853, 271512
OFFSET
0,7
FORMULA
a(n) = A000041(n) - A034891(n).
EXAMPLE
For n = 6 the partitions of 6 that contain at least one composite parts are [6], [4, 2] and [4, 1, 1]. There are three of these partitions so a(6) = 3.
PROG
(PARI) a(n) = my(nb=0); forpart(p=n, if (#select(x->((x>1) && !isprime(x)), Vec(p)) >=1, nb++); ); nb; \\ Michel Marcus, Jun 23 2022
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 22 2022
STATUS
approved
Number of non-constant integer partitions of n into prime parts with prime multiplicities.
+0
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 3, 0, 1, 4, 5, 3, 1, 3, 5, 7, 3, 5, 6, 8, 8, 11, 7, 6, 8, 15, 14, 14, 10, 15, 17, 21, 18, 23, 20, 28, 25, 31, 27, 35, 32, 33, 37, 46, 41, 50, 45, 58, 56, 63, 59, 78, 69, 76, 81, 85, 80, 103, 107, 111, 114, 127
OFFSET
0,17
EXAMPLE
The a(n) partitions for selected n (B = 11):
n = 10 16 19 20 25 28
---------------------------------------------------------------
3322 5533 55333 7733 77722 BB33
55222 55522 77222 5533333 BB222
3322222 3333322 553322 5553322 775522
33322222 5522222 55333222 55533322
332222222 55522222 772222222
333333322 3322222222222
3333322222
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], !SameQ@@#&&And@@PrimeQ/@#&& And@@PrimeQ/@Length/@Split[#]&]], {n, 0, 30}]
CROSSREFS
Constant partitions are counted by A001221, ranked by A000961.
Non-constant partitions are counted by A144300, ranked A024619.
The constant version is A230595, ranked by A352519.
This is the non-constant case of A351982, ranked by A346068.
These partitions are ranked by A352518.
A000040 lists the primes.
A000607 counts partitions into primes, ranked by A076610.
A001597 lists perfect powers, complement A007916.
A038499 counts partitions of prime length.
A053810 lists primes to primes.
A055923 counts partitions with prime multiplicities, ranked by A056166.
A257994 counts prime indices that are themselves prime.
A339218 counts powerful partitions into prime parts, ranked by A352492.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 24 2022
STATUS
approved
Number of partitions of n with largest inscribed rectangle having area <= k; triangle T(n,k), 0<=n, 0<=k<=n, read by rows.
+0
13
1, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 2, 5, 0, 0, 0, 1, 5, 7, 0, 0, 0, 0, 5, 7, 11, 0, 0, 0, 0, 3, 7, 13, 15, 0, 0, 0, 0, 1, 5, 16, 18, 22, 0, 0, 0, 0, 0, 3, 17, 21, 27, 30, 0, 0, 0, 0, 0, 1, 16, 22, 34, 38, 42, 0, 0, 0, 0, 0, 0, 13, 21, 39, 48, 54, 56
OFFSET
0,6
COMMENTS
T(n,k) = A000041(k) for n<k is omitted from the triangle.
Sum_{n>=0} T(n,k) = A115725(k).
LINKS
FORMULA
T(n,k) = Sum_{i=1..k} A115723(n,i) for n>0, T(0,0) = 1.
EXAMPLE
T(5,4) = 5 because there are 5 partitions of 5 with largest inscribed rectangle having area <= 4: [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4].
T(9,5) = 3: [1,1,1,2,4], [1,1,1,1,5], [1,1,2,5].
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 2;
0, 0, 1, 3;
0, 0, 0, 2, 5;
0, 0, 0, 1, 5, 7;
0, 0, 0, 0, 5, 7, 11;
0, 0, 0, 0, 3, 7, 13, 15;
0, 0, 0, 0, 1, 5, 16, 18, 22;
0, 0, 0, 0, 0, 3, 17, 21, 27, 30;
0, 0, 0, 0, 0, 1, 16, 22, 34, 38, 42;
...
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
`if`(i=1, `if`(t+n<=k, 1, 0), `if`(i<1, 0, b(n, i-1, t, k)+
add(`if`(t+j<=k/i, b(n-i*j, i-1, t+j, k), 0), j=1..n/i))))
end:
T:= (n, k)-> b(n, n, 0, k):
seq(seq(T(n, k), k=0..n), n=0..15);
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i == 1, If[t + n <= k, 1, 0], If[i < 1, 0, b[n, i - 1, t, k] + Sum[If[t + j <= k/i, b[n - i*j, i - 1, t + j, k], 0], {j, 1, n/i}]]]] ; T[n_, k_] := b[n, n, 0, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 15}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
CROSSREFS
Diagonal gives: A000041.
T(n,n-1) = A144300(n) = A000041(n) - A000005(n).
T(n+d,n) for d=2-10 give: A218623, A218624, A218625, A218626, A218627, A218628, A218629, A218630, A218631.
KEYWORD
nonn,look,tabl
AUTHOR
Alois P. Heinz, Apr 12 2012
STATUS
approved

Search completed in 0.014 seconds