OFFSET
0,6
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
T(n,k) = Sum_{i=1..k} A115723(n,i) for n>0, T(0,0) = 1.
EXAMPLE
T(5,4) = 5 because there are 5 partitions of 5 with largest inscribed rectangle having area <= 4: [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4].
T(9,5) = 3: [1,1,1,2,4], [1,1,1,1,5], [1,1,2,5].
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 2;
0, 0, 1, 3;
0, 0, 0, 2, 5;
0, 0, 0, 1, 5, 7;
0, 0, 0, 0, 5, 7, 11;
0, 0, 0, 0, 3, 7, 13, 15;
0, 0, 0, 0, 1, 5, 16, 18, 22;
0, 0, 0, 0, 0, 3, 17, 21, 27, 30;
0, 0, 0, 0, 0, 1, 16, 22, 34, 38, 42;
...
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
`if`(i=1, `if`(t+n<=k, 1, 0), `if`(i<1, 0, b(n, i-1, t, k)+
add(`if`(t+j<=k/i, b(n-i*j, i-1, t+j, k), 0), j=1..n/i))))
end:
T:= (n, k)-> b(n, n, 0, k):
seq(seq(T(n, k), k=0..n), n=0..15);
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i == 1, If[t + n <= k, 1, 0], If[i < 1, 0, b[n, i - 1, t, k] + Sum[If[t + j <= k/i, b[n - i*j, i - 1, t + j, k], 0], {j, 1, n/i}]]]] ; T[n_, k_] := b[n, n, 0, k]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 15}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)
CROSSREFS
AUTHOR
Alois P. Heinz, Apr 12 2012
STATUS
approved