OFFSET
1,1
LINKS
Mathematics Stack Exchange, What is a sequence run? (answered 2011-12-01)
EXAMPLE
The prime factors of 80 are {2,2,2,2,5} and the permutation (2,2,5,2,2) has runs (2,2), (5), and (2,2), which are not all distinct, so 80 is in the sequence. On the other hand, 24 has prime factors {2,2,2,3}, and all four permutations (3,2,2,2), (2,3,2,2), (2,2,3,2), (2,2,2,3) have distinct runs, so 24 is not in the sequence.
The terms and their prime indices begin:
12: (2,1,1) 76: (8,1,1) 132: (5,2,1,1)
18: (2,2,1) 80: (3,1,1,1,1) 140: (4,3,1,1)
20: (3,1,1) 84: (4,2,1,1) 144: (2,2,1,1,1,1)
28: (4,1,1) 90: (3,2,2,1) 147: (4,4,2)
36: (2,2,1,1) 92: (9,1,1) 148: (12,1,1)
44: (5,1,1) 98: (4,4,1) 150: (3,3,2,1)
45: (3,2,2) 99: (5,2,2) 153: (7,2,2)
48: (2,1,1,1,1) 100: (3,3,1,1) 156: (6,2,1,1)
50: (3,3,1) 108: (2,2,2,1,1) 162: (2,2,2,2,1)
52: (6,1,1) 112: (4,1,1,1,1) 164: (13,1,1)
60: (3,2,1,1) 116: (10,1,1) 168: (4,2,1,1,1)
63: (4,2,2) 117: (6,2,2) 171: (8,2,2)
68: (7,1,1) 120: (3,2,1,1,1) 172: (14,1,1)
72: (2,2,1,1,1) 124: (11,1,1) 175: (4,3,3)
75: (3,3,2) 126: (4,2,2,1) 176: (5,1,1,1,1)
MATHEMATICA
Select[Range[100], Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]], !UnsameQ@@Split[#]&]!={}&]
CROSSREFS
The version for run-lengths instead of runs is A024619.
These permutations are counted by A351202.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A283353 counts normal multisets with a permutation w/o all distinct runs.
A297770 counts distinct runs in binary expansion.
A351291 ranks compositions without all distinct runs.
Counting words with all distinct runs:
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 12 2022
STATUS
approved