[go: up one dir, main page]

login
A116931
Number of partitions of n in which each part, with the possible exception of the largest, occurs at least twice.
19
1, 2, 2, 4, 4, 8, 8, 13, 15, 22, 24, 37, 40, 57, 64, 89, 98, 135, 149, 199, 224, 292, 325, 424, 472, 601, 676, 850, 950, 1191, 1329, 1643, 1845, 2258, 2524, 3082, 3442, 4158, 4659, 5591, 6246, 7472, 8338, 9903, 11072, 13077, 14586, 17184, 19150, 22431, 25019
OFFSET
1,2
COMMENTS
Also, partitions of n in which any two distinct parts differ by at least 2. Example: a(5) = 4 because we have [5], [4,1], [3,1,1] and [1,1,1,1,1].
REFERENCES
P. A. MacMahon, Combinatory Analysis, Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 52, Article 298.
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..20000 (terms 1..7500 from Alois P. Heinz)
Mingjia Yang, Doron Zeilberger, Systematic Counting of Restricted Partitions, arXiv:1910.08989 [math.CO], 2019.
FORMULA
G.f.: sum(x^k*product(1+x^(2j)/(1-x^j), j=1..k-1)/(1-x^k), k=1..infinity). More generally, the g.f. of partitions of n in which each part, with the possible exception of the largest, occurs at least b times, is sum(x^k*product(1+x^(bj)/(1-x^j), j=1..k-1)/(1-x^k), k=1..infinity). It is also the g.f. of partitions of n in which any two distinct parts differ by at least b.
log(a(n)) ~ 2*Pi*sqrt(n)/3. - Vaclav Kotesovec, Jan 28 2022
EXAMPLE
a(5) = 4 because we have [5], [3,1,1], [2,1,1,1] and [1,1,1,1,1].
q + 2*q^2 + 2*q^3 + 4*q^4 + 4*q^5 + 8*q^6 + 8*q^7 + 13*q^8 + 15*q^9 + ...
There are a(9) = 15 partitions of 9 where distinct parts differ by at least 2:
01: [ 1 1 1 1 1 1 1 1 1 ]
02: [ 3 1 1 1 1 1 1 ]
03: [ 3 3 1 1 1 ]
04: [ 3 3 3 ]
05: [ 4 1 1 1 1 1 ]
06: [ 4 4 1 ]
07: [ 5 1 1 1 1 ]
08: [ 5 2 2 ]
09: [ 5 3 1 ]
10: [ 6 1 1 1 ]
11: [ 6 3 ]
12: [ 7 1 1 ]
13: [ 7 2 ]
14: [ 8 1 ]
15: [ 9 ]
- Joerg Arndt, Jun 09 2013
MAPLE
g:=sum(x^k*product(1+x^(2*j)/(1-x^j), j=1..k-1)/(1-x^k), k=1..70): gser:=series(g, x=0, 60): seq(coeff(gser, x^n), n=1..54);
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1) +add(b(n-i*j, i-2), j=1..n/i)))
end:
a:= n-> b(n, n):
seq(a(n), n=1..70); # Alois P. Heinz, Nov 04 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + Sum[b[n-i*j, i-2], {j, 1, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
PROG
(PARI) {a(n) = if( n<1, 0, polcoeff( sum( k=1, n, x^k / (1 - x^k) * prod( j=1, k-1, 1 + x^(2*j) / (1 - x^j), 1 + x * O(x^(n-k)))), n))} /* Michael Somos, Jan 26 2008 */
CROSSREFS
Column k=2 of A218698. - Alois P. Heinz, Nov 04 2012
Column k=0 of A268193. - Alois P. Heinz, Feb 13 2016
Sequence in context: A046971 A051754 A108747 * A206558 A145810 A172148
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 27 2006
STATUS
approved