[go: up one dir, main page]

login
Search: a135705 -id:a135705
     Sort: relevance | references | number | modified | created      Format: long | short | data
Second hexagonal numbers: a(n) = n*(2*n + 1).
+10
197
0, 3, 10, 21, 36, 55, 78, 105, 136, 171, 210, 253, 300, 351, 406, 465, 528, 595, 666, 741, 820, 903, 990, 1081, 1176, 1275, 1378, 1485, 1596, 1711, 1830, 1953, 2080, 2211, 2346, 2485, 2628, 2775, 2926, 3081, 3240, 3403, 3570, 3741, 3916, 4095, 4278
OFFSET
0,2
COMMENTS
Note that when starting from a(n)^2, equality holds between series of first n+1 and next n consecutive squares: a(n)^2 + (a(n) + 1)^2 + ... + (a(n) + n)^2 = (a(n) + n + 1)^2 + (a(n) + n + 2)^2 + ... + (a(n) + 2*n)^2; e.g., 10^2 + 11^2 + 12^2 = 13^2 + 14^2. - Henry Bottomley, Jan 22 2001; with typos fixed by Zak Seidov, Sep 10 2015
a(n) = sum of second set of n consecutive even numbers - sum of the first set of n consecutive odd numbers: a(1) = 4-1, a(3) = (8+10+12) - (1+3+5) = 21. - Amarnath Murthy, Nov 07 2002
Partial sums of odd numbers 3 mod 4, that is, 3, 3+7, 3+7+11, ... See A001107. - Jon Perry, Dec 18 2004
If Y is a fixed 3-subset of a (2n+1)-set X then a(n) is the number of (2n-1)-subsets of X intersecting Y. - Milan Janjic, Oct 28 2007
More generally (see the first comment), for n > 0, let b(n,k) = a(n) + k*(4*n + 1). Then b(n,k)^2 + (b(n,k) + 1)^2 + ... + (b(n,k) + n)^2 = (b(n,k) + n + 1 + 2*k)^2 + ... + (b(n,k) + 2*n + 2*k)^2 + k^2; e.g., if n = 3 and k = 2, then b(n,k) = 47 and 47^2 + ... + 50^2 = 55^2 + ... + 57^2 + 2^2. - Charlie Marion, Jan 01 2011
Sequence found by reading the line from 0, in the direction 0, 10, ..., and the line from 3, in the direction 3, 21, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Nov 09 2011
a(n) is the number of positions of a domino in a pyramidal board with base 2n+1. - César Eliud Lozada, Sep 26 2012
Differences of row sums of two consecutive rows of triangle A120070, i.e., first differences of A016061. - J. M. Bergot, Jun 14 2013 [In other words, the partial sums of this sequence give A016061. - Leo Tavares, Nov 23 2021]
a(n)*Pi is the total length of half circle spiral after n rotations. See illustration in links. - Kival Ngaokrajang, Nov 05 2013
For corresponding sums in first comment by Henry Bottomley, see A059255. - Zak Seidov, Sep 10 2015
a(n) also gives the dimension of the simple Lie algebras B_n (n >= 2) and C_n (n >= 3). - Wolfdieter Lang, Oct 21 2015
With T_(i+1,i)=a(i+1) and all other elements of the lower triangular matrix T zero, T is the infinitesimal generator for unsigned A130757, analogous to A132440 for the Pascal matrix. - Tom Copeland, Dec 13 2015
Partial sums of squares with alternating signs, ending in an even term: a(n) = 0^2 - 1^2 +- ... + (2*n)^2, cf. Example & Formula from Berselli, 2013. - M. F. Hasler, Jul 03 2018
Also numbers k with the property that in the symmetric representation of sigma(k) the smallest Dyck path has a central peak and the largest Dyck path has a central valley, n > 0. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
a(n) is the area of a triangle with vertices at (0,0), (2*n+1, 2*n), and ((2*n+1)^2, 4*n^2). - Art Baker, Dec 12 2018
This sequence is the largest subsequence of A000217 such that gcd(a(n), 2*n) = a(n) mod (2*n) = n, n > 0 up to a given value of n. It is the interleave of A033585 (a(n) is even) and A033567 (a(n) is odd). - Torlach Rush, Sep 09 2019
A generalization of Hasler's Comment (Jul 03 2018) follows. Let P(k,n) be the n-th k-gonal number. Then for k > 1, partial sums of {P(k,n)} with alternating signs, ending in an even term, = n*((k-2)*n + 1). - Charlie Marion, Mar 02 2021
Let U_n(H) = {A in M_n(H): A*A^H = I_n} be the group of n X n unitary matrices over the quaternions (A^H is the conjugate transpose of A. Note that over the quaternions we still have A*A^H = I_n <=> A^H*A = I_n by mapping A and A^H to (2n) X (2n) complex matrices), then a(n) is the dimension of its Lie algebra u_n(H) = {A in M_n(H): A + A^H = 0} as a real vector space. A basis is given by {(E_{st}-E_{ts}), i*(E_{st}+E_{ts}), j*(E_{st}+E_{ts}), k*(E_{st}+E_{ts}): 1 <= s < t <= n} U {i*E_{tt}, j*E_{tt}, k*E_{tt}: t = 1..n}, where E_{st} is the matrix with all entries zero except that its (st)-entry is 1. - Jianing Song, Apr 05 2021
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)
LINKS
Matthew Cho, Anton Dochtermann, Ryota Inagaki, Suho Oh, Dylan Snustad, and Bailee Zacovic, Chip-firing and critical groups of signed graphs, arXiv:2306.09315 [math.CO], 2023. See p. 22.
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Milan Janjic, Two Enumerative Functions, University of Banja Luka (Bosnia and Herzegovina, 2017).
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
Markus Scheuer, show that; strange sum yields triangular numbers, Mathematics StackExchange.
Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
FORMULA
a(n) = 3*Sum_{k=1..n} tan^2(k*Pi/(2*(n + 1))). - Ignacio Larrosa Cañestro, Apr 17 2001
a(n)^2 = n*(a(n) + 1 + a(n) + 2 + ... + a(n) + 2*n); e.g., 10^2 = 2*(11 + 12 + 13 + 14). - Charlie Marion, Jun 15 2003
From N. J. A. Sloane, Sep 13 2003: (Start)
G.f.: x*(3 + x)/(1 - x)^3.
E.g.f.: exp(x)*(3*x + 2*x^2).
a(n) = A000217(2*n) = A000384(-n). (End)
a(n) = A084849(n) - 1; A100035(a(n) + 1) = 1. - Reinhard Zumkeller, Oct 31 2004
a(n) = A126890(n, k) + A126890(n, n-k), 0 <= k <= n. - Reinhard Zumkeller, Dec 30 2006
a(2*n) = A033585(n); a(3*n) = A144314(n). - Reinhard Zumkeller, Sep 17 2008
a(n) = a(n-1) + 4*n - 1 (with a(0) = 0). - Vincenzo Librandi, Dec 24 2010
a(n) = Sum_{k=0.2*n} (-1)^k*k^2. - Bruno Berselli, Aug 29 2013
a(n) = A242342(2*n + 1). - Reinhard Zumkeller, May 11 2014
a(n) = Sum_{k=0..2} C(n-2+k, n-2) * C(n+2-k, n), for n > 1. - J. M. Bergot, Jun 14 2014
a(n) = floor(Sum_{j=(n^2 + 1)..((n+1)^2 - 1)} sqrt(j)). Fractional portion of each sum converges to 1/6 as n -> infinity. See A247112 for a similar summation sequence on j^(3/2) and references to other such sequences. - Richard R. Forberg, Dec 02 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3, with a(0) = 0, a(1) = 3, and a(2) = 10. - Harvey P. Dale, Feb 10 2015
Sum_{n >= 1} 1/a(n) = 2*(1 - log(2)) = 0.61370563888010938... (A188859). - Vaclav Kotesovec, Apr 27 2016
From Wolfdieter Lang, Apr 27 2018: (Start)
a(n) = trinomial(2*n, 2) = trinomial(2*n, 2*(2*n-1)), for n >= 1, with the trinomial irregular triangle A027907; i.e., trinomial(n,k) = A027907(n,k).
a(n) = (1/Pi) * Integral_{x=0..2} (1/sqrt(4 - x^2)) * (x^2 - 1)^(2*n) * R(4*(n-1), x), for n >= 0, with the R polynomial coefficients given in A127672, and R(-m, x) = R(m, x). [See Comtet, p. 77, the integral formula for q = 3, n -> 2*n, k = 2, rewritten with x = 2*cos(phi).] (End)
a(n) = A002943(n)/2. - Ralf Steiner, Jul 23 2019
a(n) = A000290(n) + A002378(n). - Torlach Rush, Nov 02 2020
a(n) = A003215(n) - A000290(n+1). See Squared Hexagons illustration. Leo Tavares, Nov 23 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/2 + log(2) - 2. - Amiram Eldar, Nov 28 2021
EXAMPLE
For n=6, a(6) = 0^2 - 1^2 + 2^2 - 3^2 + 4^2 - 5^2 + 6^2 - 7^2 + 8^2 - 9^2 + 10^2 - 11^2 + 12^2 = 78. - Bruno Berselli, Aug 29 2013
MAPLE
seq(binomial(2*n+1, 2), n=0..46); # Zerinvary Lajos, Jan 21 2007
MATHEMATICA
Table[n*(2*n+1), {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Nov 16 2008 *)
LinearRecurrence[{3, -3, 1}, {0, 3, 10}, 50] (* Harvey P. Dale, Feb 10 2015 *)
CoefficientList[Series[x*(3 + x)/(1 - x)^3, {x, 0, 50}], x] (* Stefano Spezia, Sep 02 2018 *)
PROG
(PARI) a(n)=n*(2*n+1)
(Haskell)
a014105 n = n * (2 * n + 1)
a014105_list = scanl (+) 0 a004767_list -- Reinhard Zumkeller, Oct 03 2012
(Magma) [ n*(2*n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 14 2014
(GAP) List([0..50], n->n*(2*n+1)); # Muniru A Asiru, Oct 31 2018
(Sage) [n*(2*n+1) for n in range(50)] # G. C. Greubel, Dec 16 2018
CROSSREFS
Second column of array A094416.
Equals A033586(n) divided by 4.
See Comments of A132124.
Second n-gonal numbers: A005449, A147875, A045944, A179986, A033954, A062728, A135705.
Row sums in triangle A253580.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 14 1998
EXTENSIONS
Link added and minor errors corrected by Johannes W. Meijer, Feb 04 2010
STATUS
approved
Rhombic matchstick numbers: a(n) = n*(3*n+2).
+10
73
0, 5, 16, 33, 56, 85, 120, 161, 208, 261, 320, 385, 456, 533, 616, 705, 800, 901, 1008, 1121, 1240, 1365, 1496, 1633, 1776, 1925, 2080, 2241, 2408, 2581, 2760, 2945, 3136, 3333, 3536, 3745, 3960, 4181, 4408, 4641, 4880, 5125, 5376, 5633, 5896, 6165, 6440
OFFSET
0,2
COMMENTS
From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the n-th term of the sequence found by reading the line from 0 in the direction 0,5,.... The spiral begins:
.
85--84--83--82--81--80
. \
56--55--54--53--52 79
/ . \ \
57 33--32--31--30 51 78
/ / . \ \ \
58 34 16--15--14 29 50 77
/ / / . \ \ \ \
59 35 17 5---4 13 28 49 76
/ / / / . \ \ \ \ \
60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / /
61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
(End)
Connection to triangular numbers: a(n) = 4*T_n + S_n where T_n is the n-th triangular number and S_n is the n-th square. - William A. Tedeschi, Sep 12 2010
Also, second octagonal numbers. - Bruno Berselli, Jan 13 2011
Sequence found by reading the line from 0, in the direction 0, 16, ... and the line from 5, in the direction 5, 33, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012
Let P denote the points from the n X n grid. A(n-1) also coincides with the minimum number of points Q needed to "block" P, that is, every line segment spanned by two points from P must contain one point from Q. - Manfred Scheucher, Aug 30 2018
Also the number of internal edges of an (n+1)*(n+1) "square" of hexagons; i.e., n+1 rows, each of n+1 edge-adjacent hexagons, stacked with minimal overhang. - Jon Hart, Sep 29 2019
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n+2; {1, 2n-1, 1, 1, 1, 2n-1, 1, 18n+4}]. - Magus K. Chu, Oct 13 2022
LINKS
Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
M. Janjic and B. Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
FORMULA
O.g.f.: x*(5+x)/(1-x)^3. - R. J. Mathar, Jan 07 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=5, a(2)=16. - Harvey P. Dale, May 06 2011
a(n) = a(n-1) + 6*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
For n > 0, a(n)^3 + (a(n)+1)^3 + ... + (a(n)+n)^3 + 2*A000217(n)^2 = (a(n) + n + 1)^3 + ... + (a(n) + 2n)^3; see also A033954. - Charlie Marion, Dec 08 2007
a(n) = Sum_{i=0..n-1} A016969(i) for n > 0. - Bruno Berselli, Jan 13 2011
a(n) = A174709(6*n+4). - Philippe Deléham, Mar 26 2013
a(n) = A001082(2*n). - Michael Turniansky, Aug 24 2013
Sum_{n>=1} 1/a(n) = (9 + sqrt(3)*Pi - 9*log(3))/12 = 0.3794906245574721941... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A002378(n) + A014105(n). - J. M. Bergot, Apr 24 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(12) - 3/4. - Amiram Eldar, Jul 03 2020
E.g.f.: exp(x)*x*(5 + 3*x). - Stefano Spezia, Jun 08 2021
From Leo Tavares, Oct 14 2021: (Start)
a(n) = A000290(n) + 4*A000217(n). See Square Stars illustration.
a(n) = A000567(n+2) - A022144(n+1)
a(n) = A005563(n) + A001105(n).
a(n) = A056109(n) - 1. (End)
From Leo Tavares, Oct 06 2022: (Start)
a(n) = A003154(n+1) - A000567(n+1). See Split Stars illustration.
a(n) = A014105(n) + 2*A000217(n). (End)
MATHEMATICA
Table[n*(3n+2), {n, 0, 60}] (* Harvey P. Dale, May 05 2011 *)
LinearRecurrence[{3, -3, 1}, {0, 5, 16}, 60] (* Harvey P. Dale, Jan 19 2016 *)
CoefficientList[Series[x*(5 + x)/(1 - x)^3, {x, 0, 60}], x] (* Stefano Spezia, Sep 01 2018 *)
PROG
(PARI) a(n)=n*(3*n+2) \\ Charles R Greathouse IV, Nov 20 2012
(Magma) [n*(3*n+2) : n in [0..100]]; // Wesley Ivan Hurt, Sep 24 2017
CROSSREFS
Bisection of A001859. See Comments of A135713.
Cf. second n-gonal numbers: A005449, A014105, A147875, A179986, A033954, A062728, A135705.
Cf. A056109.
Cf. A003154.
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
Second 10-gonal (or decagonal) numbers: n*(4*n+3).
+10
55
0, 7, 22, 45, 76, 115, 162, 217, 280, 351, 430, 517, 612, 715, 826, 945, 1072, 1207, 1350, 1501, 1660, 1827, 2002, 2185, 2376, 2575, 2782, 2997, 3220, 3451, 3690, 3937, 4192, 4455, 4726, 5005, 5292, 5587, 5890, 6201, 6520, 6847, 7182, 7525, 7876, 8235
OFFSET
0,2
COMMENTS
Same as A033951 except start at 0. See example section.
Bisection of A074377. Also sequence found by reading the line from 0, in the direction 0, 22, ... and the line from 7, in the direction 7, 45, ..., in the square spiral whose vertices are the generalized 10-gonal numbers A074377. - Omar E. Pol, Jul 24 2012
REFERENCES
S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
FORMULA
a(n) = A001107(-n) = A074377(2*n).
G.f.: x*(7+x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = a(n-1) + 8*n - 1 with a(0)=0. - Vincenzo Librandi, Jul 20 2010
For n>0, Sum_{j=0..n} (a(n) + j)^4 + (4*A000217(n))^3 = Sum_{j=n+1..2n} (a(n) + j)^4; see also A045944. - Charlie Marion, Dec 08 2007, edited by Michel Marcus, Mar 14 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 7, a(2) = 22. - Philippe Deléham, Mar 26 2013
a(n) = A118729(8n+6). - Philippe Deléham, Mar 26 2013
a(n) = A002943(n) + n = A007742(n) + 2n = A016742(n) + 3n = A033991(n) + 4n = A002939(n) + 5n = A001107(n) + 6n = A033996(n) - n. - Philippe Deléham, Mar 26 2013
Sum_{n>=1} 1/a(n) = 4/9 + Pi/6 - log(2) = 0.2748960394827980081... . - Vaclav Kotesovec, Apr 27 2016
E.g.f.: exp(x)*x*(7 + 4*x). - Stefano Spezia, Jun 08 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(2)) + log(2)/3 - 4/9 - sqrt(2)*arcsinh(1)/3. - Amiram Eldar, Nov 28 2021
For n>0, (a(n)^2 + n)/(a(n) + n) = (4*n + 1)^2/4, a ratio of two squares. - Rick L. Shepherd, Feb 23 2022
a(n) = A060544(n+1) - A000217(n+1). - Leo Tavares, Mar 31 2022
EXAMPLE
36--37--38--39--40--41--42
| |
35 16--17--18--19--20 43
| | | |
34 15 4---5---6 21 44
| | | | | |
33 14 3 0===7==22==45==76=>
| | | | | |
32 13 2---1 8 23
| | | |
31 12--11--10---9 24
| |
30--29--28--27--26--25
MATHEMATICA
Table[n(4n+3), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 7, 22}, 50] (* Harvey P. Dale, May 06 2018 *)
PROG
(PARI) a(n)=4*n^2+3*n
(Magma) [n*(4*n+3): n in [0..50]]; // G. C. Greubel, May 24 2019
(Sage) [n*(4*n+3) for n in (0..50)] # G. C. Greubel, May 24 2019
(GAP) List([0..50], n-> n*(4*n+3)) # G. C. Greubel, May 24 2019
CROSSREFS
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, this sequence, A062728, A135705.
Cf. A060544.
KEYWORD
nonn,easy
STATUS
approved
Generalized 12-gonal numbers: k*(5*k-4) for k = 0, +-1, +-2, ...
+10
52
0, 1, 9, 12, 28, 33, 57, 64, 96, 105, 145, 156, 204, 217, 273, 288, 352, 369, 441, 460, 540, 561, 649, 672, 768, 793, 897, 924, 1036, 1065, 1185, 1216, 1344, 1377, 1513, 1548, 1692, 1729, 1881, 1920, 2080, 2121, 2289, 2332, 2508, 2553, 2737, 2784, 2976, 3025
OFFSET
0,3
COMMENTS
Also generalized dodecagonal numbers.
Second 12-gonal numbers (A135705) and positive terms of A051624 interleaved. - Omar E. Pol, Aug 04 2012
The characteristic function of this sequence is A205988. - Jason Kimberley, Nov 15 2012
Also, integer values of m*(m+4)/5. - Bruno Berselli, Dec 05 2012
Also, numbers h such that 5*h + 4 is a square. - Bruno Berselli, Oct 10 2013
Exponents in expansion of Product_{n >= 1} (1 + x^(10*n-9))*(1 + x^(10*n-1))*(1 - x^(10*n)) = 1 + x + x^9 + x^12 + x^28 + .... - Peter Bala, Dec 10 2020
LINKS
S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares, Discrete Math. , Vol. 274, No. 1-3 (2004), pp. 9-24. See E(q).
FORMULA
From R. J. Mathar, Sep 24 2011: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = A008805(n-1) + A008805(n-3) + 8*A008805(n-2). (End)
From Bruno Berselli, Sep 26 2011: (Start)
G.f.: x*(1+8*x+x^2)/((1+x)^2*(1-x)^3).
a(n) = (10*n*(n+1) + 3*(2*n+1)*(-1)^n - 3)/8.
a(n) = a(-n-1). (End)
Sum_{n>=1} 1/a(n) = (5 + 4*sqrt(1 + 2/sqrt(5))*Pi)/16. - Vaclav Kotesovec, Oct 05 2016
E.g.f.: (3*(1 - 2*x)*exp(-x) + (-3 +20*x +10*x^2)*exp(x))/8. - G. C. Greubel, Jul 04 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = 5*log(5)/8 + sqrt(5)*log(phi)/4 - 5/16, where phi is the golden ratio (A001622). - Amiram Eldar, Feb 28 2022
MATHEMATICA
nn = 25; Sort[Table[n*(5*n - 4), {n, -nn, nn}]] (* T. D. Noe, Sep 23 2011 *)
PROG
(Magma) [0] cat &cat[[5*n^2-4*n, 5*n^2+4*n]: n in [1..25]]; // Vincenzo Librandi, Sep 26 2011
(PARI) vector(50, n, n--; (10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8) \\ G. C. Greubel, Jul 04 2019
(Sage) [(10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8 for n in (0..50)] # G. C. Greubel, Jul 04 2019
(GAP) List([0..50], n-> (10*n^2 +10*n -3 +3*(-1)^n*(2*n+1))/8) # G. C. Greubel, Jul 04 2019
CROSSREFS
Partial sums of A195161.
Column 8 of A195152.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), this sequence (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Cf. sequences of the form m*(m+k)/(k+1) listed in A274978. [Bruno Berselli, Jul 25 2016]
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 10 2011
STATUS
approved
Centered 10-gonal numbers.
+10
40
1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, 4961, 5281, 5611, 5951, 6301, 6661, 7031, 7411, 7801, 8201, 8611, 9031, 9461, 9901, 10351, 10811
OFFSET
1,2
COMMENTS
Deleting the least significant digit yields the (n-1)-st triangular number: a(n) = 10*A000217(n-1) + 1. - Amarnath Murthy, Dec 11 2003
All divisors of a(n) are congruent to 1 or -1, modulo 10; that is, they end in the decimal digit 1 or 9. Proof: If p is an odd prime different from 5 then 5n^2 - 5n + 1 == 0 (mod p) implies 25(2n - 1)^2 == 5 (mod p), whence p == 1 or -1 (mod 10). - Nick Hobson, Nov 13 2006
Centered decagonal numbers. - Omar E. Pol, Oct 03 2011
The partial sums of this sequence give A004466. - Leo Tavares, Oct 04 2021
The continued fraction expansion of sqrt(5*a(n)) is [5n-3; {2, 2n-2, 2, 10n-6}]. For n=1, this collapses to [2; {4}]. - Magus K. Chu, Sep 12 2022
Numbers m such that 20*m + 5 is a square. Also values of the Fibonacci polynomial y^2 - x*y - x^2 for x = n and y = 3*n - 1. This is a subsequence of A089270. - Klaus Purath, Oct 30 2022
All terms can be written as a difference of two consecutive squares a(n) = A005891(n-1)^2 - A028895(n-1)^2, and they can be represented by the forms (x^2 + 2mxy + (m^2-1)y^2) and (3x^2 + (6m-2)xy + (3m^2-2m)y^2), both of discriminant 4. - Klaus Purath, Oct 17 2023
FORMULA
a(n) = 5*n*(n-1) + 1.
From Gary W. Adamson, Dec 29 2007: (Start)
Binomial transform of [1, 10, 10, 0, 0, 0, ...];
Narayana transform (A001263) of [1, 10, 0, 0, 0, ...]. (End)
a(n) = 10*n + a(n-1) - 10; a(1)=1. - Vincenzo Librandi, Aug 07 2010
G.f.: x*(1+8*x+x^2) / (1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = A124080(n-1) + 1. - Omar E. Pol, Oct 03 2011
a(n) = A101321(10,n-1). - R. J. Mathar, Jul 28 2016
a(n) = A028387(A016861(n-1))/5 for n > 0. - Art Baker, Mar 28 2019
E.g.f.: (1+5*x^2)*exp(x) - 1. - G. C. Greubel, Mar 30 2019
Sum_{n>=1} 1/a(n) = Pi * tan(Pi/(2*sqrt(5))) / sqrt(5). - Vaclav Kotesovec, Jul 23 2019
From Amiram Eldar, Jun 20 2020: (Start)
Sum_{n>=1} a(n)/n! = 6*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 6/e - 1. (End)
a(n) = A005891(n-1) + 5*A000217(n-1). - Leo Tavares, Jul 14 2021
a(n) = A003154(n) - 2*A000217(n-1). See Mid-section Stars illustration. - Leo Tavares, Sep 06 2021
From Leo Tavares, Oct 06 2021: (Start)
a(n) = A144390(n-1) + 2*A028387(n-1). See Mid-section Star Pillars illustration.
a(n) = A000326(n) + A000217(n) + 3*A000217(n-1). See Trapezoidal Rays illustration.
a(n) = A060544(n) + A000217(n-1). (End)
From Leo Tavares, Oct 31 2021: (Start)
a(n) = A016754(n-1) + 2*A000217(n-1).
a(n) = A016754(n-1) + A002378(n-1).
a(n) = A069099(n) + 3*A000217(n-1).
a(n) = A069099(n) + A045943(n-1).
a(n) = A003215(n-1) + 4*A000217(n-1).
a(n) = A003215(n-1) + A046092(n-1).
a(n) = A001844(n-1) + 6*A000217(n-1).
a(n) = A001844(n-1) + A028896(n-1).
a(n) = A005448(n) + 7*A000217(n).
a(n) = A005448(n) + A024966(n). (End)
From Klaus Purath, Oct 30 2022: (Start)
a(n) = a(n-2) + 10*(2*n-3).
a(n) = 2*a(n-1) - a(n-2) + 10.
a(n) = A135705(n-1) + n.
a(n) = A190816(n) - n.
a(n) = 2*A005891(n-1) - 1. (End)
MATHEMATICA
FoldList[#1+#2 &, 1, 10Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
1+5*Pochhammer[Range[50]-1, 2] (* G. C. Greubel, Mar 30 2019 *)
PROG
(PARI) j=[]; for(n=1, 75, j=concat(j, (5*n*(n-1)+1))); j
(PARI) for (n=1, 1000, write("b062786.txt", n, " ", 5*n*(n - 1) + 1) ) \\ Harry J. Smith, Aug 11 2009
(Magma) [1+5*n*(n-1): n in [1..50]]; // G. C. Greubel, Mar 30 2019
(Sage) [1+5*rising_factorial(n-1, 2) for n in (1..50)] # G. C. Greubel, Mar 30 2019
(GAP) List([1..50], n-> 1+5*n*(n-1)) # G. C. Greubel, Mar 30 2019
(Python) def a(n): return(5*n**2-5*n+1) # Torlach Rush, May 10 2024
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jul 19 2001
EXTENSIONS
Better description from Terrel Trotter, Jr., Apr 06 2002
STATUS
approved
Second heptagonal numbers: a(n) = n*(5*n+3)/2.
+10
34
0, 4, 13, 27, 46, 70, 99, 133, 172, 216, 265, 319, 378, 442, 511, 585, 664, 748, 837, 931, 1030, 1134, 1243, 1357, 1476, 1600, 1729, 1863, 2002, 2146, 2295, 2449, 2608, 2772, 2941, 3115, 3294, 3478, 3667, 3861, 4060, 4264, 4473, 4687, 4906, 5130, 5359, 5593
OFFSET
0,2
COMMENTS
Zero followed by partial sums of A016897.
Apparently = every 2nd term of A111710 and A085787.
Bisection of A085787. Sequence found by reading the line from 0, in the direction 0, 13, ... and the line from 4, in the direction 4, 27, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Jul 18 2012
Numbers of the form m^2 + k*m*(m+1)/2: in this case is k=3. See also A254963. - Bruno Berselli, Feb 11 2015
FORMULA
G.f.: x*(4+x)/(1-x)^3.
a(n) = Sum_{k=0..n-1} A016897(k).
a(n) - a(n-1) = 5*n -1. - Vincenzo Librandi, Nov 26 2010
G.f.: U(0) where U(k) = 1 + 2*(2*k+3)/(k + 2 - x*(k+2)^2*(k+3)/(x*(k+2)*(k+3) + (2*k+2)*(2*k+3)/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 14 2012
E.g.f.: U(0) where U(k) = 1 + 2*(2*k+3)/(k + 2 - 2*x*(k+2)^2*(k+3)/(2*x*(k+2)*(k+3) + (2*k+2)^2*(2*k+3)/U(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Nov 14 2012
a(n) = A130520(5n+3). - Philippe Deléham, Mar 26 2013
a(n) = A131242(10n+7)/2. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=4, a(2)=13. - Harvey P. Dale, May 15 2013
Sum_{n>=1} 1/a(n) = 10/9 + sqrt(1 - 2/sqrt(5))*Pi/3 - 5*log(5)/6 + sqrt(5)*log((1 + sqrt(5))/2)/3 = 0.4688420784500060750083432... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n) + A000217(2*n). - Bruno Berselli, Jul 01 2016
From Ilya Gutkovskiy, Jul 01 2016: (Start)
E.g.f.: x*(8 + 5*x)*exp(x)/2.
Dirichlet g.f.: (5*zeta(s-2) + 3*zeta(s-1))/2. (End)
a(n) = A000566(-n) for all n in Z. - Michael Somos, Jan 25 2019
From Leo Tavares, Feb 14 2022: (Start)
a(n) = A003215(n) - A000217(n+1). See Sliced Hexagons illustration in links.
a(n) = A000096(n) + 2*A000290(n). (End)
EXAMPLE
G.f. = 4*x + 13*x^2 + 27*x^3 + 46*x^4 + 70*x^5 + 99*x^6 + 133*x^7 + ... - Michael Somos, Jan 25 2019
MATHEMATICA
Table[(n(5n+3))/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 4, 13}, 50] (* Harvey P. Dale, May 15 2013 *)
PROG
(PARI) a(n)=n*(5*n+3)/2 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [n*(5*n+3)/2: n in [0..50]]; // G. C. Greubel, Jul 04 2019
(Sage) [n*(5*n+3)/2 for n in (0..50)] # G. C. Greubel, Jul 04 2019
(GAP) List([0..50], n-> n*(5*n+3)/2) # G. C. Greubel, Jul 04 2019
CROSSREFS
Cf. A016897, A111710, A000217, A085787, A224419 (positions of squares).
Second n-gonal numbers: A005449, A014105, A045944, A179986, A033954, A062728, A135705.
Cf. A000566.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Klaus Brockhaus and R. J. Mathar, Nov 20 2008
New name from Bruno Berselli, Jan 13 2011
STATUS
approved
Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).
+10
18
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
OFFSET
0,12
COMMENTS
Complementary with A130488 regarding triangular numbers, in that A130488(n)+10*a(n)=n(n+1)/2=A000217(n).
LINKS
FORMULA
a(n) = (1/2)*floor(n/10)*(2n-8-10*floor(n/10)).
a(n) = A059995(n)*(2n-8-10*A059995(n))/2.
a(n) = (1/2)*A059995(n)*(n-8+A010879(n)).
a(n) = (n-A010879(n))*(n+A010879(n)-8)/20.
G.f.: x^10/((1-x^10)(1-x)^2).
From Philippe Deléham, Mar 27 2013: (Start)
a(10n) = A051624(n).
a(10n+1) = A135706(n).
a(10n+2) = A147874(n+1).
a(10n+3) = 2*A005476(n).
a(10n+4) = A033429(n).
a(10n+5) = A202803(n).
a(10n+6) = A168668(n).
a(10n+7) = 2*A147875(n).
a(10n+8) = A135705(n).
a(10n+9) = A124080(n). (End)
a(n) = A008728(n-10) for n>= 10. - Georg Fischer, Nov 03 2018
EXAMPLE
As square array :
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12, 14, 16, 18, 20, 22, 24, 26, 28, 30
33, 36, 39, 42, 45, 48, 51, 54, 57, 60
64, 68, 72, 76, 80, 84, 88, 92, 96, 100
105, 110, 115, 120, 125, 130, 135, 140, 145, 150
156, 162, 168, 174, 180, 186, 192, 198, 204, 210
... - Philippe Deléham, Mar 27 2013
MATHEMATICA
Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n, 0, 50}] (* G. C. Greubel, Dec 13 2016 *)
Accumulate[Table[FromDigits[Most[IntegerDigits[n]]], {n, 0, 110}]] (* or *) LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2}, 120] (* Harvey P. Dale, Apr 06 2017 *)
PROG
(PARI) for(n=0, 50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
(PARI) a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, Jun 21 2007
STATUS
approved
Second 9-gonal (or nonagonal) numbers: a(n) = n*(7*n+5)/2.
+10
18
0, 6, 19, 39, 66, 100, 141, 189, 244, 306, 375, 451, 534, 624, 721, 825, 936, 1054, 1179, 1311, 1450, 1596, 1749, 1909, 2076, 2250, 2431, 2619, 2814, 3016, 3225, 3441, 3664, 3894, 4131, 4375, 4626, 4884, 5149, 5421, 5700, 5986, 6279, 6579, 6886
OFFSET
0,2
COMMENTS
This sequence is a bisection of A118277 (even part).
Sequence found by reading the line from 0, in the direction 0, 19... and the line from 6, in the direction 6, 39,..., in the square spiral whose vertices are the generalized 9-gonal numbers A118277. - Omar E. Pol, Jul 24 2012
The early part of this sequence is a strikingly close approximation to the early part of A100752. - Peter Munn, Nov 14 2019
FORMULA
G.f.: x*(6 + x)/(1 - x)^3.
a(n) = Sum_{i=0..(n-1)} A017053(i) for n>0.
a(-n) = A001106(n).
Sum_{i=0..n} (a(n)+i)^2 = ( Sum_{i=(n+1)..2*n} (a(n)+i)^2 ) + 21*A000217(n)^2 for n>0.
a(n) = a(n-1)+7*n-1 for n>0, with a(0)=0. - Vincenzo Librandi, Feb 05 2011
a(0)=0, a(1)=6, a(2)=19; for n>2, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Aug 19 2011
a(n) = A174738(7n+5). - Philippe Deléham, Mar 26 2013
a(n) = A001477(n) + 2*A000290(n) + 3*A000217(n). - J. M. Bergot, Apr 25 2014
a(n) = A055998(4*n) - A055998(3*n). - Bruno Berselli, Sep 23 2016
E.g.f.: (x/2)*(12 + 7*x)*exp(x). - G. C. Greubel, Aug 19 2017
MATHEMATICA
f[n_] := n (7 n + 5)/2; f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*)
LinearRecurrence[{3, -3, 1}, {0, 6, 19}, 60] (* or *) Array[(#(7# + 5))/2&, 60, 0] (* Harvey P. Dale, Aug 19 2011 *)
CoefficientList[Series[x (6 + x)/(1 - x)^3, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 15 2012 *)
PROG
(Magma) [n*(7*n+5)/2: n in [0..50]]; // Bruno Berselli, Sep 23 2016
(Magma) I:=[0, 6, 19]; [n le 3 select I[n] else 3*Self(n-1) -3*Self(n-2) +Self(n-3): n in [1..60]]; // Vincenzo Librandi, Oct 15 2012
(PARI) a(n)=n*(7*n+5)/2 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. second k-gonal numbers: A005449 (k=5), A014105 (k=6), A147875 (k=7), A045944 (k=8), this sequence (k=9), A033954 (k=10), A062728 (k=11), A135705 (k=12).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 13 2011
STATUS
approved
Second 11-gonal (or hendecagonal) numbers: a(n) = n*(9*n+7)/2.
+10
16
0, 8, 25, 51, 86, 130, 183, 245, 316, 396, 485, 583, 690, 806, 931, 1065, 1208, 1360, 1521, 1691, 1870, 2058, 2255, 2461, 2676, 2900, 3133, 3375, 3626, 3886, 4155, 4433, 4720, 5016, 5321, 5635, 5958, 6290, 6631, 6981, 7340, 7708, 8085, 8471, 8866, 9270
OFFSET
0,2
COMMENTS
Old name: Write 0,1,2,3,4,... in a triangular spiral, then a(n) is the sequence found by reading the line from 0 in the direction 0,8,...
Sequence found by reading the line from 0, in the direction 0, 25, ... and the line from 8, in the direction 8, 51, ..., in the square spiral whose vertices are the generalized 11-gonal numbers A195160. - Omar E. Pol, Jul 24 2012
FORMULA
a(n) = n*(9*n+7)/2.
a(n) = 9*n + a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
From Bruno Berselli, Jan 13 2011: (Start)
G.f.: x*(8 + x)/(1 - x)^3.
a(n) = Sum_{i=0..n-1} A017257(i) for n > 0. (End)
a(n) = A218470(9n+7). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(16 + 9*x)*exp(x)/2. - G. C. Greubel, May 24 2019
EXAMPLE
The spiral begins:
15
/ \
16 14
/ \
17 3 13
/ / \ \
18 4 2 12
/ / \ \
19 5 0---1 11
/ / \
20 6---7---8---9--10
MATHEMATICA
Table[n*(9*n+7)/2, {n, 0, 50}] (* G. C. Greubel, May 24 2019 *)
LinearRecurrence[{3, -3, 1}, {0, 8, 25}, 50] (* Harvey P. Dale, Sep 06 2019 *)
PROG
(PARI) a(n)=n*(9*n+7)/2 \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [n*(9*n+7)/2: n in [0..50]]; // G. C. Greubel, May 24 2019
(Sage) [n*(9*n+7)/2 for n in (0..50)] # G. C. Greubel, May 24 2019
(GAP) List([0..50], n-> n*(9*n+7)/2) # G. C. Greubel, May 24 2019
CROSSREFS
Cf. A051682.
Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, A033954, this sequence, A135705.
KEYWORD
nonn,easy
AUTHOR
Floor van Lamoen, Jul 21 2001
EXTENSIONS
New name from Bruno Berselli (with the original formula), Jan 13 2011
STATUS
approved
Second 13-gonal numbers: a(n) = n*(11*n+9)/2.
+10
8
0, 10, 31, 63, 106, 160, 225, 301, 388, 486, 595, 715, 846, 988, 1141, 1305, 1480, 1666, 1863, 2071, 2290, 2520, 2761, 3013, 3276, 3550, 3835, 4131, 4438, 4756, 5085, 5425, 5776, 6138, 6511, 6895, 7290, 7696, 8113, 8541, 8980, 9430, 9891, 10363
OFFSET
0,2
COMMENTS
Sequence found by reading the line from 0, in the direction 0, 31... and the line from 10, in the direction 10, 63,..., in the square spiral whose vertices are the generalized 13-gonal numbers A195313.
FORMULA
G.f.: x*(10+x)/(1-x)^3. - Philippe Deléham, Mar 27 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 10, a(2) = 31. - Philippe Deléham, Mar 27 2013
a(n) = A051865(n) + 9n = A180223(n) + 8n = A022268(n) + 5n = A022269(n) + 4n = A152740(n) - n. - Philippe Deléham, Mar 27 2013
a(n) = A218530(11n+9). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(20 + 11*x)*exp(x)/2. - G. C. Greubel, Jul 04 2019
MATHEMATICA
Table[n*(11*n+9)/2, {n, 0, 50}] (* G. C. Greubel, Jul 04 2019 *)
PROG
(PARI) a(n)=n*(11*n+9)/2 \\ Charles R Greathouse IV, Jun 17 2017
(Magma) [n*(11*n+9)/2: n in [0..50]]; // G. C. Greubel, Jul 04 2019
(Sage) [n*(11*n+9)/2 for n in (0..50)] # G. C. Greubel, Jul 04 2019
(GAP) List([0..50], n-> n*(11*n+9)/2) # G. C. Greubel, Jul 04 2019
CROSSREFS
Bisection of A195313.
Second k-gonal numbers (k=5..14): A005449, A014105, A147875, A045944, A179986, A033954, A062728, A135705, this sequence, A211014.
Cf. A051865.
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Aug 04 2012
STATUS
approved

Search completed in 0.016 seconds