[go: up one dir, main page]

login
A010879
Final digit of n.
162
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
OFFSET
0,3
COMMENTS
Also decimal expansion of 137174210/1111111111 = 0.1234567890123456789012345678901234... - Jason Earls, Mar 19 2001
In general the base k expansion of A062808(k)/A048861(k) (k>=2) will produce the numbers 0,1,2,...,k-1 repeated with period k, equivalent to the sequence n mod k. The k-digit number in base k 123...(k-1)0 (base k) expressed in decimal is A062808(k), whereas A048861(k) = k^k-1. In particular, A062808(10)/A048861(10)=1234567890/9999999999=137174210/1111111111.
a(n) = n^5 mod 10. - Zerinvary Lajos, Nov 04 2009
FORMULA
a(n) = n mod 10.
Periodic with period 10.
From Hieronymus Fischer, May 31 and Jun 11 2007: (Start)
Complex representation: a(n) = 1/10*(1-r^n)*sum{1<=k<10, k*product{1<=m<10,m<>k, (1-r^(n-m))}} where r=exp(Pi/5*i) and i=sqrt(-1).
Trigonometric representation: a(n) = (256/5)^2*(sin(n*Pi/10))^2 * sum{1<=k<10, k*product{1<=m<10,m<>k, (sin((n-m)*Pi/10))^2}}.
G.f.: g(x) = (sum{1<=k<10, k*x^k})/(1-x^10) = -x*(1 +2*x +3*x^2 +4*x^3 +5*x^4 +6*x^5 +7*x^6 +8*x^7 +9*x^8) ) / ( (x-1) *(1+x) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) ).
Also: g(x) = x(9x^10-10x^9+1)/((1-x^10)(1-x)^2).
a(n) = n mod 2+2*(floor(n/2)mod 5) = A000035(n) + 2*A010874(A004526(n)).
Also: a(n) = n mod 5+5*(floor(n/5)mod 2) = A010874(n)+5*A000035(A002266(n)). (End)
a(n) = 10*{n/10}, where {x} means fractional part of x. - Enrique Pérez Herrero, Jul 30 2009
a(n) = n - 10*A059995(n). - Reinhard Zumkeller, Jul 26 2011
a(n) = n^k mod 10, for k > 0, where k mod 4 = 1. - Doug Bell, Jun 15 2015
MAPLE
A010879 := proc(n)
n mod 10 ;
end proc: # R. J. Mathar, Jul 12 2013
MATHEMATICA
Table[10*FractionalPart[n/10], {n, 1, 300}] (* Enrique Pérez Herrero, Jul 30 2009 *)
LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 81] (* Ray Chandler, Aug 26 2015 *)
PadRight[{}, 100, Range[0, 9]] (* Harvey P. Dale, Oct 04 2021 *)
PROG
(Sage) [power_mod(n, 5, 10)for n in range(0, 81)] # Zerinvary Lajos, Nov 04 2009
(PARI) a(n)=n%10 \\ Charles R Greathouse IV, Jun 16 2011
(Haskell)
a010879 = (`mod` 10)
a010879_list = cycle [0..9] -- Reinhard Zumkeller, Mar 26 2012
(Magma) [n mod(10): n in [0..90]]; // Vincenzo Librandi, Jun 17 2015
(Python) def a(n): return n % 10 # Martin Gergov, Oct 17 2022
CROSSREFS
Cf. A008959, A008960, A070514. - Doug Bell, Jun 15 2015
Partial sums: A130488. Other related sequences A130481, A130482, A130483, A130484, A130485, A130486, A130487.
Sequence in context: A285094 A134778 A118943 * A179636 A217657 A175419
KEYWORD
nonn,base,easy
EXTENSIONS
Formula section edited for better readability by Hieronymus Fischer, Jun 13 2012
STATUS
approved