[go: up one dir, main page]

login
A168668
a(n) = n*(2 + 5*n).
11
0, 7, 24, 51, 88, 135, 192, 259, 336, 423, 520, 627, 744, 871, 1008, 1155, 1312, 1479, 1656, 1843, 2040, 2247, 2464, 2691, 2928, 3175, 3432, 3699, 3976, 4263, 4560, 4867, 5184, 5511, 5848, 6195, 6552, 6919, 7296, 7683, 8080, 8487, 8904, 9331, 9768, 10215, 10672
OFFSET
0,2
COMMENTS
Appears on the main diagonal of the following table of terms of the Hydrogen series, A169603:
0, 3, 8, 15, 24, ... A005563
0, 7, 16, 1, 40, 55, ... A061039
0, 11, 24, 39, 56, 3, 96, ... A061043
0, 15, 32, 51, 72, 95, 120, ... A061047
0, 19, 40, 63, 88, 115, 144, 175, 208, 1, ...
FORMULA
G.f.: x*(7 + 3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
First differences: a(n) - a(n-1) = 10*n-3.
Second differences: a(n) - 2*a(n-1) + a(n-2) = 10 = A010692(n).
a(n) = A131242(10n+6). - Philippe Deléham, Mar 27 2013
a(n) = A000384(n) + 6*A000217(n). - Luciano Ancora, Mar 28 2015
a(n) = A000217(n) + A000217(3*n). - Bruno Berselli, Jul 01 2016
E.g.f.: x*(7 + 5*x)*exp(x). - G. C. Greubel, Jul 29 2016
Sum_{n>=1} 1/a(n) = 5/4 - sqrt(1-2/sqrt(5))*Pi/4 + sqrt(5)*log(phi)/4 - 5*log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 17 2023
MAPLE
A168668:=n->n*(2+5*n): seq(A168668(n), n=0..50); # Wesley Ivan Hurt, Mar 28 2015
MATHEMATICA
f[n_]:=n*(2+5*n); f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*)
LinearRecurrence[{3, -3, 1}, {0, 7, 24}, 50] (* Harvey P. Dale, Sep 09 2021 *)
PROG
(Magma) [n*(2+5*n): n in [0..50] ]; // Vincenzo Librandi, Aug 06 2011
(PARI) vector(50, n, n--; n*(2+5*n)) \\ Derek Orr, Jun 26 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 02 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Dec 05 2009
STATUS
approved