OFFSET
0,2
COMMENTS
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature(3,-3,1).
FORMULA
G.f.: x*(7 + 3*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
First differences: a(n) - a(n-1) = 10*n-3.
Second differences: a(n) - 2*a(n-1) + a(n-2) = 10 = A010692(n).
a(n) = A131242(10n+6). - Philippe Deléham, Mar 27 2013
E.g.f.: x*(7 + 5*x)*exp(x). - G. C. Greubel, Jul 29 2016
Sum_{n>=1} 1/a(n) = 5/4 - sqrt(1-2/sqrt(5))*Pi/4 + sqrt(5)*log(phi)/4 - 5*log(5)/8, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 17 2023
MAPLE
MATHEMATICA
f[n_]:=n*(2+5*n); f[Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Feb 05 2011*)
LinearRecurrence[{3, -3, 1}, {0, 7, 24}, 50] (* Harvey P. Dale, Sep 09 2021 *)
PROG
(Magma) [n*(2+5*n): n in [0..50] ]; // Vincenzo Librandi, Aug 06 2011
(PARI) vector(50, n, n--; n*(2+5*n)) \\ Derek Orr, Jun 26 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Dec 02 2009
EXTENSIONS
Edited and extended by R. J. Mathar, Dec 05 2009
STATUS
approved