[go: up one dir, main page]

login
Search: a125037 -id:a125037
     Sort: relevance | references | number | modified | created      Format: long | short | data
Odd primes generated recursively: a(1) = 3, a(n) = Min {p is prime; p divides Q+2}, where Q is the product of previous terms in the sequence.
+10
20
3, 5, 17, 257, 65537, 641, 7, 318811, 19, 1747, 12791, 73, 90679, 67, 59, 113, 13, 41, 47, 151, 131, 1301297155768795368671, 20921, 1514878040967313829436066877903, 5514151389810781513, 283, 1063, 3027041, 29, 24040758847310589568111822987, 154351, 89
OFFSET
1,1
COMMENTS
The first five terms comprise the known Fermat primes: A019434.
LINKS
EXAMPLE
a(7) = 7 is the smallest prime divisor of 3 * 5 * 17 * 257 * 65537 * 641 + 2 = 2753074036097 = 7 * 11 * 37 * 966329953.
MATHEMATICA
a={3}; q=1;
For[n=2, n<=20, n++,
q=q*Last[a];
AppendTo[a, Min[FactorInteger[q+2][[All, 1]]]];
];
a (* Robert Price, Jul 16 2015 *)
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
STATUS
approved
Primes of the form 8*k + 3 generated recursively. Initial prime is 3. General term is a(n) = Min_{p is prime; p divides 2 + Q^2; p == 3 (mod 8)}, where Q is the product of previous terms in the sequence.
+10
19
3, 11, 1091, 1296216011, 2177870960662059587828905091, 76870667, 19, 257680660619, 73677606898727076965233531, 23842300525435506904690028531941969449780447746432390747, 35164737203
OFFSET
1,1
COMMENTS
2+Q^2 always has a prime divisor congruent to 3 modulo 8.
REFERENCES
D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191.
EXAMPLE
a(3) = 1091 is the smallest prime divisor congruent to 3 mod 8 of 2+Q^2 = 1091, where Q = 3 * 11.
MATHEMATICA
a = {3}; q = 1;
For[n = 2, n ≤ 5, n++,
q = q*Last[a];
AppendTo[a, Min[Select[FactorInteger[2 + q^2][[All, 1]], Mod[#,
8] \[Equal] 3 &]]];
];
a (* Robert Price, Jul 14 2015 *)
PROG
(PARI) lista(nn) = my(f, q=3); print1(q); for(n=2, nn, f=factor(2+q^2)[, 1]~; for(i=1, #f, if(f[i]%8==3, print1(", ", f[i]); q*=f[i]; break))); \\ Jinyuan Wang, Aug 05 2022
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
EXTENSIONS
a(10) from Robert Price, Jul 04 2015
a(11) from Robert Price, Jul 05 2015
STATUS
approved
Primes of the form 22k+1 generated recursively. Initial prime is 23. General term is a(n) = Min {p is prime; p divides (R^11 - 1)/(R - 1); p == 1 (mod 11)}, where Q is the product of previous terms in the sequence and R = 11*Q.
+10
18
23, 4847239, 2971, 3936923, 9461, 1453, 331, 81373909, 89, 920771904664817214817542307, 353, 401743, 17088192002665532981, 11617
OFFSET
1,1
COMMENTS
All prime divisors of (R^11 - 1)/(R - 1) different from 11 are congruent to 1 modulo 22.
REFERENCES
M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.
EXAMPLE
a(3) = 2971 is the smallest prime divisor congruent to 1 mod 22 of (R^11-1)/(R-1) =
7693953366218628230903493622259922359469805176129784863956847906415055607909988155588181877
= 2971 * 357405886421 * 914268562437006833738317047149 * 7925221522553970071463867283158786415606996703, where Q = 23 * 4847239, and R = 11*Q.
MATHEMATICA
a={23}; q=1;
For[n=2, n<=2, n++,
q=q*Last[a]; r=11*q;
AppendTo[a, Min[Select[FactorInteger[(r^11-1)/(r-1)][[All, 1]], Mod[#, 11]==1 &]]];
];
a (* Robert Price, Jul 14 2015 *)
KEYWORD
more,nonn
AUTHOR
Nick Hobson, Nov 18 2006
EXTENSIONS
More terms from Max Alekseyev, May 29 2009
STATUS
approved
Primes of the form 12k+7 generated recursively. Initial prime is 7. General term is a(n)=Min {p is prime; p divides 3+4Q^2; Mod[p,12]=7}, where Q is the product of previous terms in the sequence.
+10
2
7, 199, 7761799, 487, 67, 103, 1482549740515442455520791, 31, 139, 787, 19, 39266047, 1955959, 50650885759, 367, 185767, 62168707
OFFSET
1,1
COMMENTS
All prime divisors of 3+4Q^2 are congruent to 1 modulo 6.
At least one prime divisor of 3+4Q^2 is congruent to 3 modulo 4 and hence to 7 modulo 12.
The first six terms are the same as those of A057204.
LINKS
EXAMPLE
a(3) = 1482549740515442455520791 is the smallest prime divisor congruent to 7 mod 12 of 3+4Q^2 = 5281642303363312989311974746340327 = 3562539697 * 1482549740515442455520791, where Q = 7 * 199 * 7761799 * 487 * 67 * 103.
MATHEMATICA
a={7}; q=1;
For[n=2, n<=7, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[4*q^2+3][[All, 1]], Mod[#, 12]==7 &]]];
];
a (* Robert Price, Jul 15 2015 *)
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
STATUS
approved
Primes of the form 10*k + 9 generated recursively. Initial prime is 19. General term is a(n) = Min_{p is prime; p divides 100*Q^2 - 5; p == 9 (mod 10)}, where Q is the product of previous terms in the sequence.
+10
2
19, 7219, 462739, 509, 129229, 295380580489, 9653956849, 149, 110212292237172705230749846071050188009093377022084806290042881946231583507557298889, 157881589, 60397967745386189, 1429, 79
OFFSET
1,1
COMMENTS
100Q^2-5 always has a prime divisor congruent to 9 modulo 10.
LINKS
EXAMPLE
a(3) = 462739 is the smallest prime divisor congruent to 9 mod 10 of 100Q^2-5 = 1881313992095 = 5 * 462739 * 813121, where Q = 19 * 7219.
MATHEMATICA
a={19}; q=1;
For[n=2, n<=6, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[100*q^2-5][[All, 1]], Mod[#, 10]==9&]]];
];
a (* Robert Price, Jul 18 2015 *)
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
STATUS
approved
Primes of the form 12k+1 generated recursively. Initial prime is 13. General term is a(n)=Min {p is prime; p divides Q^4-Q^2+1}, where Q is the product of previous terms in the sequence.
+10
2
13, 28393, 128758492789, 73, 193, 37, 457, 8363172060732903211423577787181
OFFSET
1,1
COMMENTS
All prime divisors of Q^4 - Q^2 + 1 are congruent to 1 modulo 12.
REFERENCES
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, NY, Second Edition (1990), p. 63.
EXAMPLE
a(3) = 128758492789 is the smallest prime divisor of Q^4 - Q^2 + 1 = 18561733755472408508281 = 128758492789 * 144159296629, where Q = 13 * 28393.
MATHEMATICA
a = {13}; q = 1;
For[n = 2, n ≤ 8, n++,
q = q*Last[a];
AppendTo[a, Min[Select[FactorInteger[q^4 - q^2 + 1][[All, 1]],
Mod[#, 12] == 1 &]]];
];
a (* Robert Price, Jun 25 2015 *)
KEYWORD
more,nonn
AUTHOR
Nick Hobson, Nov 18 2006
EXTENSIONS
a(8) from Robert Price, Jun 25 2015
STATUS
approved
Primes of the form 8k+1 generated recursively. Initial prime is 17. General term is a(n)=Min {p is prime; p divides (2Q)^4 + 1}, where Q is the product of previous terms in the sequence.
+10
2
17, 1336337, 4261668267710686591310687815697, 41, 4390937134822286389262585915435960722186022220433, 241, 1553, 243537789182873, 97, 27673, 4289, 457, 137201, 73, 337, 569891669978849, 617, 1697, 65089, 1609, 761
OFFSET
1,1
COMMENTS
All prime divisors of (2Q)^4 + 1 are congruent to 1 modulo 8.
REFERENCES
G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag, NY, (1998), p. 271.
LINKS
EXAMPLE
a(3) = 4261668267710686591310687815697 is the smallest prime divisor of (2Q)^4 + 1 = 4261668267710686591310687815697, where Q = 17 * 1336337.
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
EXTENSIONS
More terms from Sean A. Irvine, Apr 09 2015
STATUS
approved
Primes of the form 12*k + 5 generated recursively. Initial prime is 5. General term is a(n) = Min_{p is prime; p divides 1 + 4*Q^2; p == 5 (mod 12)}, where Q is the product of previous terms in the sequence.
+10
1
5, 101, 1020101, 53, 29, 2507707213238852620996901, 449, 433361, 401, 925177698346131180901394980203075088053316845914981, 44876921, 17, 173
OFFSET
1,1
COMMENTS
All prime divisors of 1+4Q^2 are congruent to 1 modulo 4.
At least one prime divisor of 1+4Q^2 is congruent to 2 modulo 3 and hence to 5 modulo 12.
The first seven terms are the same as those of A057207.
The next term is known but is too large to include.
LINKS
EXAMPLE
a(8) = 433361 is the smallest prime divisor congruent to 5 mod 12 of 1+4Q^2 = 3179238942812523869898723304484664524974766291591037769022962819805514576256901 = 13 * 433361 * 42408853 * 2272998442375593325550634821 * 5854291291251561948836681114631909089, where Q = 5 * 101 * 1020101 * 53 * 29 * 2507707213238852620996901 * 449.
MATHEMATICA
a={5}; q=1;
For[n=2, n<=5, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[4*q^2+1][[All, 1]], Mod[#, 12]==5 &]]];
];
a (* Robert Price, Jul 16 2015 *)
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006 and Nov 23 2006
STATUS
approved
Primes of the form 12k+5 generated recursively. Initial prime is 5. General term is a(n) = Min {p is prime; p divides 4+Q^2; p == 5 (mod 12)}, where Q is the product of previous terms in the sequence.
+10
1
5, 29, 17, 6076229, 1289, 78067083126343039013, 521, 8606045503613, 15837917, 1873731749, 809, 137, 2237, 17729
OFFSET
1,1
COMMENTS
Since Q is odd, all prime divisors of 4+Q^2 are congruent to 1 modulo 4.
At least one prime divisor of 4+Q^2 is congruent to 2 modulo 3 and hence to 5 modulo 12.
The first two terms are the same as those of A057208.
LINKS
EXAMPLE
a(3) = 17 is the smallest prime divisor congruent to 5 mod 12 of 4+Q^2 = 21029 = 17 * 1237, where Q = 5 * 29.
MATHEMATICA
a={5}; q=1;
For[n=2, n<=5, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[q^2+4][[All, 1]], Mod[#, 12]==5 &]]];
];
a (* Robert Price, Jul 16 2015 *)
KEYWORD
more,nonn
AUTHOR
Nick Hobson, Nov 18 2006
STATUS
approved
Primes of the form 10k+1 generated recursively. Initial prime is 11. General term is a(n)=Min {p is prime; p divides (R^5 - 1)/(R - 1); Mod[p,5]=1}, where Q is the product of previous terms in the sequence and R = 5Q.
+10
1
11, 211, 1031, 22741, 41, 15487770335331184216023237599647357572461782407557681, 311, 61, 55172461, 3541, 1381, 2851, 19841, 151, 9033671, 456802301, 1720715817015281, 19001, 71
OFFSET
1,1
COMMENTS
All prime divisors of (R^5 - 1)/(R - 1) different from 5 are congruent to 1 modulo 10.
REFERENCES
M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.
LINKS
EXAMPLE
a(3) = 1031 is the smallest prime divisor congruent to 1 mod 10 of (R^5 - 1)/(R - 1) = 18139194759758381 = 1031 * 17593787351851, where Q = 11 * 211 and R = 5Q.
MATHEMATICA
a={11}; q=1;
For[n=2, n<=6, n++,
q=q*Last[a]; r=5*q;
AppendTo[a, Min[Select[FactorInteger[(r^5-1)/(r-1)][[All, 1]], Mod[#, 10]==1&]]];
];
a (* Robert Price, Jul 14 2015 *)
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
EXTENSIONS
a(20)..a(34) in b-file from Max Alekseyev, Oct 23 2008
STATUS
approved

Search completed in 0.010 seconds