[go: up one dir, main page]

login
A125037
Primes of the form 26k+1 generated recursively. Initial prime is 53. General term is a(n) = Min {p is prime; p divides (R^13 - 1)/(R - 1); p == 1 (mod 13)}, where Q is the product of previous terms in the sequence and R = 13*Q.
19
53, 11462027512399586179504472990060461, 25793, 178907, 131, 5669, 3511, 157, 59021, 13070705295701, 547, 79, 424361132339, 126146525792794964042953901, 5889547, 521, 1301, 6249393047, 9829, 2549, 298378081, 29379481, 56993, 1093, 26729
OFFSET
1,1
COMMENTS
All prime divisors of (R^13 - 1)/(R - 1) different from 13 are congruent to 1 modulo 26.
REFERENCES
M. Ram Murty, Problems in Analytic Number Theory, Springer-Verlag, NY, (2001), pp. 208-209.
EXAMPLE
a(2) = 11462027512399586179504472990060461 is the smallest prime divisor congruent to 1 mod 26 of (R^13 - 1)/(R - 1) = 11462027512399586179504472990060461, where Q = 53 and R = 13*Q.
MATHEMATICA
a={53}; q=1;
For[n=2, n<=5, n++,
q=q*Last[a]; r=13*q;
AppendTo[a, Min[Select[FactorInteger[(r^13-1)/(r-1)][[All, 1]], Mod[#, 26]==1 &]]];
];
a (* Robert Price, Jul 16 2015 *)
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
EXTENSIONS
More terms from Sean A. Irvine, Jun 24 2011
STATUS
approved