[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a124990 -id:a124990
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that Phi(12, n) is prime, where Phi is the cyclotomic polynomial.
+10
8
2, 3, 4, 5, 9, 10, 12, 13, 17, 25, 27, 30, 31, 36, 38, 39, 43, 48, 52, 55, 56, 61, 62, 65, 83, 92, 94, 99, 100, 104, 105, 109, 114, 118, 126, 131, 166, 168, 169, 172, 183, 185, 190, 194, 196, 198, 209, 224, 225, 229, 231, 239, 244, 257, 260, 261, 263, 269, 270, 272, 278, 291, 296, 299, 300, 302, 308, 311
OFFSET
1,1
COMMENTS
Numbers n such that n^4-n^2+1 is prime, or numbers n such that A060886(n) is prime.
LINKS
MAPLE
A246397:=n->`if`(isprime(n^4-n^2+1), n, NULL): seq(A246397(n), n=1..300); # Wesley Ivan Hurt, Nov 14 2014
MATHEMATICA
Select[Range[350], PrimeQ[Cyclotomic[12, #]] &] (* Vincenzo Librandi, Jan 17 2015 *)
PROG
(PARI) for(n=1, 10^3, if(isprime(polcyclo(12, n)), print1(n, ", "))); \\ Joerg Arndt, Nov 13 2014
CROSSREFS
Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862 (11), this sequence (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).
KEYWORD
nonn
AUTHOR
Eric Chen, Nov 13 2014
STATUS
approved
Smallest prime divisor of n^4-n^2+1.
+10
3
13, 73, 241, 601, 13, 13, 37, 6481, 9901, 13, 20593, 28393, 37, 13, 97, 83233, 229, 13, 13, 61, 157, 37, 13, 390001, 181, 530713, 13, 37, 809101, 922561, 13, 13, 1069, 277, 1678321, 13, 2083693, 2311921, 61, 13, 673, 3416953, 1753, 13, 13, 1213, 5306113
OFFSET
2,1
COMMENTS
All divisors of n^4-n^2+1 are congruent to 1 modulo 12.
a(n) = 13 if and only if n is congruent to 2, -2, 6, or -6 modulo 13.
REFERENCES
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, NY, Second Edition (1990), p. 63.
EXAMPLE
The prime divisors of 6^4-6^2+1=1261 are 13 and 97, so a(5) = 13.
MATHEMATICA
Table[FactorInteger[n^4-n^2+1][[1, 1]], {n, 2, 50}] (* Harvey P. Dale, Feb 27 2012 *)
PROG
(PARI) vector(49, n, if(n<2, "-", factor(n^4-n^2+1)[1, 1]))
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Nick Hobson, Nov 26 2006
STATUS
approved

Search completed in 0.005 seconds