# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a124989 Showing 1-1 of 1 %I A124989 #12 Aug 07 2022 02:06:43 %S A124989 19,7219,462739,509,129229,295380580489,9653956849,149, %T A124989 110212292237172705230749846071050188009093377022084806290042881946231583507557298889, %U A124989 157881589,60397967745386189,1429,79 %N A124989 Primes of the form 10*k + 9 generated recursively. Initial prime is 19. General term is a(n) = Min_{p is prime; p divides 100*Q^2 - 5; p == 9 (mod 10)}, where Q is the product of previous terms in the sequence. %C A124989 100Q^2-5 always has a prime divisor congruent to 9 modulo 10. %H A124989 Robert Price, Table of n, a(n) for n = 1..14 %e A124989 a(3) = 462739 is the smallest prime divisor congruent to 9 mod 10 of 100Q^2-5 = 1881313992095 = 5 * 462739 * 813121, where Q = 19 * 7219. %t A124989 a={19}; q=1; %t A124989 For[n=2,n<=6,n++, %t A124989 q=q*Last[a]; %t A124989 AppendTo[a,Min[Select[FactorInteger[100*q^2-5][[All,1]],Mod[#,10]==9&]]]; %t A124989 ]; %t A124989 a (* _Robert Price_, Jul 18 2015 *) %Y A124989 Cf. A000945, A030433, A057204-A057208, A051308-A051335, A124984-A124993, A125037-A125045. %K A124989 nonn %O A124989 1,1 %A A124989 _Nick Hobson_, Nov 18 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE