# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a125258 Showing 1-1 of 1 %I A125258 #11 Feb 11 2024 13:18:19 %S A125258 13,73,241,601,13,13,37,6481,9901,13,20593,28393,37,13,97,83233,229, %T A125258 13,13,61,157,37,13,390001,181,530713,13,37,809101,922561,13,13,1069, %U A125258 277,1678321,13,2083693,2311921,61,13,673,3416953,1753,13,13,1213,5306113 %N A125258 Smallest prime divisor of n^4-n^2+1. %C A125258 All divisors of n^4-n^2+1 are congruent to 1 modulo 12. %C A125258 a(n) = 13 if and only if n is congruent to 2, -2, 6, or -6 modulo 13. %D A125258 K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, NY, Second Edition (1990), p. 63. %H A125258 Nick Hobson, Table of n, a(n) for n = 2..1000 %e A125258 The prime divisors of 6^4-6^2+1=1261 are 13 and 97, so a(5) = 13. %t A125258 Table[FactorInteger[n^4-n^2+1][[1,1]],{n,2,50}] (* _Harvey P. Dale_, Feb 27 2012 *) %o A125258 (PARI) vector(49, n, if(n<2, "-", factor(n^4-n^2+1)[1,1])) %Y A125258 Cf. A060886, A124990. %K A125258 easy,nonn %O A125258 2,1 %A A125258 _Nick Hobson_, Nov 26 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE