[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a125258 -id:a125258
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that Phi(12, n) is prime, where Phi is the cyclotomic polynomial.
+10
8
2, 3, 4, 5, 9, 10, 12, 13, 17, 25, 27, 30, 31, 36, 38, 39, 43, 48, 52, 55, 56, 61, 62, 65, 83, 92, 94, 99, 100, 104, 105, 109, 114, 118, 126, 131, 166, 168, 169, 172, 183, 185, 190, 194, 196, 198, 209, 224, 225, 229, 231, 239, 244, 257, 260, 261, 263, 269, 270, 272, 278, 291, 296, 299, 300, 302, 308, 311
OFFSET
1,1
COMMENTS
Numbers n such that n^4-n^2+1 is prime, or numbers n such that A060886(n) is prime.
LINKS
MAPLE
A246397:=n->`if`(isprime(n^4-n^2+1), n, NULL): seq(A246397(n), n=1..300); # Wesley Ivan Hurt, Nov 14 2014
MATHEMATICA
Select[Range[350], PrimeQ[Cyclotomic[12, #]] &] (* Vincenzo Librandi, Jan 17 2015 *)
PROG
(PARI) for(n=1, 10^3, if(isprime(polcyclo(12, n)), print1(n, ", "))); \\ Joerg Arndt, Nov 13 2014
CROSSREFS
Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862 (11), this sequence (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).
KEYWORD
nonn
AUTHOR
Eric Chen, Nov 13 2014
STATUS
approved
Smallest odd prime divisor of n^2 + 1.
+10
7
5, 5, 17, 13, 37, 5, 5, 41, 101, 61, 5, 5, 197, 113, 257, 5, 5, 181, 401, 13, 5, 5, 577, 313, 677, 5, 5, 421, 17, 13, 5, 5, 13, 613, 1297, 5, 5, 761, 1601, 29, 5, 5, 13, 1013, 29, 5, 5, 1201, 41, 1301, 5, 5, 2917, 17, 3137, 5, 5, 1741, 13, 1861, 5, 5, 17, 2113, 4357, 5, 5
OFFSET
2,1
COMMENTS
Any odd prime divisor of n^2+1 is congruent to 1 modulo 4.
n^2+1 is never a power of 2 for n > 1; hence a prime divisor congruent to 1 modulo 4 always exists.
a(n) = 5 if and only if n is congruent to 2 or -2 modulo 5.
If the map "x -> smallest odd prime divisor of n^2+1" is iterated, does it always terminate in the 2-cycle (5 <-> 13)? - Zoran Sunic, Oct 25 2017
REFERENCES
D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 191.
LINKS
Ray Chandler, Table of n, a(n) for n = 2..20001 (first 999 terms from Nick Hobson)
EXAMPLE
The prime divisors of 8^2 + 1 = 65 are 5 and 13, so a(7) = 5.
MAPLE
with(numtheory, factorset);
A125256 := proc(n) local t1, t2;
if n <= 1 then return(-1); fi;
if (n mod 5) = 2 or (n mod 5) = 3 then return(5); fi;
t1 := numtheory[factorset](n^2+1);
t2:=sort(convert(t1, list));
if (n mod 2) = 1 then return(t2[2]); fi;
t2[1];
end;
[seq(A125256(n), n=1..40)]; # N. J. A. Sloane, Nov 04 2017
PROG
(PARI) vector(68, n, if(n<2, "-", factor(n^2+1)[1+(n%2), 1]))
(PARI) A125256(n)=factor(n^2+1)[1+bittest(n, 0), 1] \\ M. F. Hasler, Nov 06 2017
CROSSREFS
For bisections see A256970, A293958.
KEYWORD
easy,nonn
AUTHOR
Nick Hobson, Nov 26 2006
STATUS
approved

Search completed in 0.010 seconds