[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a246397 -id:a246397
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that Phi(10, n) is prime, where Phi is the cyclotomic polynomial.
+10
41
2, 3, 5, 10, 11, 12, 16, 20, 21, 22, 33, 37, 38, 43, 47, 48, 55, 71, 75, 76, 80, 81, 111, 121, 126, 131, 133, 135, 136, 141, 155, 157, 158, 165, 176, 177, 180, 203, 223, 242, 245, 251, 253, 256, 257, 258, 265, 268, 276, 286, 290, 297, 307, 322, 323, 342, 361, 363, 366, 375, 377, 385, 388, 396, 411
OFFSET
1,1
COMMENTS
Numbers n such that (n^5+1)/(n+1) is prime, or numbers n such that A060884(n) is prime.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 893 terms from Robert Price)
MAPLE
A246392:=n->`if`(isprime((n^5+1)/(n+1)), n, NULL): seq(A246392(n), n=1..500); # Wesley Ivan Hurt, Nov 15 2014
MATHEMATICA
Select[Range[700], PrimeQ[(#^5 + 1) / (# + 1)] &] (* Vincenzo Librandi, Nov 14 2014 *)
PROG
(PARI) for(n=1, 10^3, if(isprime(polcyclo(10, n)), print1(n, ", "))); \\ Joerg Arndt, Nov 13 2014
(Magma) [n: n in [1..500]| IsPrime((n^5+1) div (n+1))]; // Vincenzo Librandi, Nov 14 2014
CROSSREFS
Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), this sequence (10), A162862 (11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075 (31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078 (43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536).
KEYWORD
nonn
AUTHOR
Eric Chen, Nov 13 2014
STATUS
approved
Let Cn(x) be the n-th cyclotomic polynomial; a(n) is the least k>1 such that Cn(k) is prime.
+10
25
3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 2, 2, 2, 2, 6, 2, 4, 3, 2, 10, 2, 22, 2, 2, 4, 6, 2, 2, 2, 2, 2, 14, 3, 61, 2, 10, 2, 14, 2, 15, 25, 11, 2, 5, 5, 2, 6, 30, 11, 24, 7, 7, 2, 5, 7, 19, 3, 2, 2, 3, 30, 2, 9, 46, 85, 2, 3, 3, 3, 11, 16, 59, 7, 2, 2, 22, 2, 21, 61, 41, 7, 2, 2, 8, 5, 2, 2
OFFSET
1,1
COMMENTS
Conjecture: a(n) is defined for all n. - Eric Chen, Nov 14 2014
Existence of a(n) is implied by Bunyakovsky's conjecture. - Robert Israel, Nov 13 2014
LINKS
Jinyuan Wang, Table of n, a(n) for n = 1..5000 (terms 1..1500 from Eric Chen)
FORMULA
a(A072226(n)) = 2. - Eric Chen, Nov 14 2014
a(n) = A117544(n) except when n is a prime power, since if n is a prime power, then A117544(n) = 1. - Eric Chen, Nov 14 2014
a(prime(n)) = A066180(n), a(2*prime(n)) = A103795(n), a(2^n) = A056993(n-1), a(3^n) = A153438(n-1), a(2*3^n) = A246120(n-1), a(3*2^n) = A246119(n-1), a(6^n) = A246121(n-1), a(5^n) = A206418(n-1), a(6*A003586(n)) = A205506(n), a(10*A003592(n)) = A181980(n).
EXAMPLE
a(11) = 5 because C11(k) is composite for k = 2, 3, 4 and prime for k = 5.
a(37) = 61 because C37(k) is composite for k = 2, 3, 4, ..., 60 and prime for k = 61.
MAPLE
f:= proc(n) local k;
for k from 2 do if isprime(numtheory:-cyclotomic(n, k)) then return k fi od
end proc:
seq(f(n), n = 1 .. 100); # Robert Israel, Nov 13 2014
MATHEMATICA
Table[k = 2; While[!PrimeQ[Cyclotomic[n, k]], k++]; k, {n, 300}] (* Eric Chen, Nov 14 2014 *)
PROG
(PARI) a(n) = k=2; while(!isprime(polcyclo(n, k)), k++); k; \\ Michel Marcus, Nov 13 2014
KEYWORD
nonn
AUTHOR
Don Reble, Jun 28 2003
STATUS
approved
Numbers n such that Phi_26(n) is prime, where Phi is the cyclotomic polynomial.
+10
18
2, 3, 21, 22, 23, 35, 39, 74, 80, 84, 89, 108, 114, 121, 126, 134, 152, 153, 171, 180, 195, 204, 230, 256, 263, 297, 321, 326, 336, 342, 345, 351, 368, 390, 393, 397, 398, 399, 413, 427, 439, 490, 525, 563, 566, 574, 591, 602, 609, 630, 641, 652, 657, 660, 667, 682, 685, 694, 708, 712, 716, 721
OFFSET
1,1
LINKS
MAPLE
select(t -> isprime((t^13+1)/(t+1)), [$1..2000]); # Robert Israel, Jan 15 2015
MATHEMATICA
Select[Range[2000], PrimeQ[(#^13 + 1) / (# + 1)] &] (* Vincenzo Librandi, Jan 15 2015 *)
PROG
(Magma) [n: n in [1..2000]| IsPrime((n^13+1) div (n+1))]; // Vincenzo Librandi, Jan 15 2015
(PARI) is(n)=isprime(polcyclo(26, n)) \\ Charles R Greathouse IV, Sep 08 2015
CROSSREFS
Cf. A246397.
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jan 09 2015
STATUS
approved
Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.
+10
6
3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
OFFSET
1,1
LINKS
MATHEMATICA
a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
PROG
(PARI) {is(n)=isprime(polcyclo(21, n))};
for(n=1, 100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018
CROSSREFS
Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A250392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), this sequence (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A244150 (524287), A243959 (1048576).
Cf. A085398 (Least k>1 such that Phi_n(k) is prime).
KEYWORD
nonn
AUTHOR
Eric Chen, Dec 24 2014
STATUS
approved
Numbers n such that Phi_15(n) is prime, where Phi is the cyclotomic polynomial.
+10
3
2, 3, 11, 17, 23, 43, 46, 52, 53, 61, 62, 78, 84, 88, 89, 92, 99, 108, 123, 124, 141, 146, 154, 156, 158, 163, 170, 171, 182, 187, 202, 217, 219, 221, 229, 233, 238, 248, 249, 253, 264, 274, 275, 278, 283, 285, 287, 291, 296, 302, 309, 314, 315, 322, 325, 342, 346, 353, 356, 366, 368, 372, 377, 380, 384, 394, 404, 406, 411, 420, 425
OFFSET
1,1
LINKS
MATHEMATICA
Select[Range[600], PrimeQ[Cyclotomic[15, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
PROG
(PARI) isok(n) = isprime(polcyclo(15, n)); \\ Michel Marcus, Jan 16 2015
CROSSREFS
Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).
KEYWORD
nonn
AUTHOR
Eric Chen, Dec 24 2014
EXTENSIONS
More terms from Vincenzo Librandi, Jan 16 2015
STATUS
approved
Numbers n such that Phi_20(n) is prime, where Phi is the cyclotomic polynomial.
+10
3
4, 9, 11, 16, 19, 26, 34, 45, 54, 70, 86, 91, 96, 101, 105, 109, 110, 119, 120, 126, 129, 139, 141, 149, 171, 181, 190, 195, 215, 229, 260, 276, 299, 305, 309, 311, 314, 319, 334, 339, 369, 375, 414, 420, 425, 444, 470, 479, 485, 506, 519, 534, 540, 550
OFFSET
1,1
LINKS
MATHEMATICA
Select[Range[600], PrimeQ[Cyclotomic[20, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
PROG
(PARI) isok(n) = isprime(polcyclo(20, n)); \\ Michel Marcus, Sep 29 2015
CROSSREFS
Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).
KEYWORD
nonn
AUTHOR
Eric Chen, Dec 24 2014
EXTENSIONS
More terms from Vincenzo Librandi, Jan 16 2015
STATUS
approved
Square array read by antidiagonals: T(m, n) = Phi_m(n), the m-th cyclotomic polynomial at x=n.
+10
3
1, 1, -1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 3, 4, 7, 2, 1, 1, 4, 5, 13, 5, 5, 1, 1, 5, 6, 21, 10, 31, 1, 1, 1, 6, 7, 31, 17, 121, 3, 7, 1, 1, 7, 8, 43, 26, 341, 7, 127, 2, 1, 1, 8, 9, 57, 37, 781, 13, 1093, 17, 3, 1, 1, 9, 10, 73, 50, 1555, 21, 5461, 82, 73, 1, 1, 1, 10, 11, 91, 65, 2801, 31, 19531, 257, 757, 11, 11, 1, 1, 11, 12, 111, 82, 4681, 43, 55987, 626, 4161, 61, 2047, 1, 1
OFFSET
0,9
COMMENTS
Outside of rows 0, 1, 2 and columns 0, 1, only terms of A206942 occur.
Conjecture: There are infinitely many primes in every row (except row 0) and every column (except column 0), the indices of the first prime in n-th row and n-th column are listed in A117544 and A117545. (See A206864 for all the primes apart from row 0, 1, 2 and column 0, 1.)
Another conjecture: Except row 0, 1, 2 and column 0, 1, the only perfect powers in this table are 121 (=Phi_5(3)) and 343 (=Phi_3(18)=Phi_6(19)).
FORMULA
T(m, n) = Phi_m(n)
EXAMPLE
Read by antidiagonals:
m\n 0 1 2 3 4 5 6 7 8 9 10 11 12
------------------------------------------------------
0 1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 0 1 2 3 4 5 6 7 8 9 10 11
2 1 2 3 4 5 6 7 8 9 10 11 12 13
3 1 3 7 13 21 31 43 57 73 91 111 133 157
4 1 2 5 10 17 26 37 50 65 82 101 122 145
5 1 5 31 121 341 781 ... ... ... ... ... ... ...
6 1 1 3 7 13 21 31 43 57 73 91 111 133
etc.
The cyclotomic polynomials are:
n n-th cyclotomic polynomial
0 1
1 x-1
2 x+1
3 x^2+x+1
4 x^2+1
5 x^4+x^3+x^2+x+1
6 x^2-x+1
...
MATHEMATICA
Table[Cyclotomic[m, k-m], {k, 0, 49}, {m, 0, k}]
PROG
(PARI) t1(n)=n-binomial(floor(1/2+sqrt(2+2*n)), 2)
t2(n)=binomial(floor(3/2+sqrt(2+2*n)), 2)-(n+1)
T(m, n) = if(m==0, 1, polcyclo(m, n))
a(n) = T(t1(n), t2(n))
CROSSREFS
Main diagonal is A070518.
Indices of primes in n-th column for n = 1-10 are A246655, A072226, A138933, A138934, A138935, A138936, A138937, A138938, A138939, A138940.
Indices of primes in main diagonal is A070519.
Cf. A117544 (indices of first prime in n-th row), A085398 (indices of first prime in n-th row apart from column 1), A117545 (indices of first prime in n-th column).
Cf. A206942 (all terms (sorted) for rows>2 and columns>1).
Cf. A206864 (all primes (sorted) for rows>2 and columns>1).
KEYWORD
sign,easy,tabl,nice
AUTHOR
Eric Chen, Apr 22 2015
STATUS
approved

Search completed in 0.011 seconds