[go: up one dir, main page]

login
Search: a100177 -id:a100177
     Sort: relevance | references | number | modified | created      Format: long | short | data
The cubes: a(n) = n^3.
(Formerly M4499 N1905)
+10
1029
0, 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, 1331, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 12167, 13824, 15625, 17576, 19683, 21952, 24389, 27000, 29791, 32768, 35937, 39304, 42875, 46656, 50653, 54872, 59319, 64000, 68921, 74088, 79507
OFFSET
0,3
COMMENTS
a(n) is the sum of the next n odd numbers; i.e., group the odd numbers so that the n-th group contains n elements like this: (1), (3, 5), (7, 9, 11), (13, 15, 17, 19), (21, 23, 25, 27, 29), ...; then each group sum = n^3 = a(n). Also the median of each group = n^2 = mean. As the sum of first n odd numbers is n^2 this gives another proof of the fact that the n-th partial sum = (n(n + 1)/2)^2. - Amarnath Murthy, Sep 14 2002
Total number of triangles resulting from criss-crossing cevians within a triangle so that two of its sides are each n-partitioned. - Lekraj Beedassy, Jun 02 2004. See Propp and Propp-Gubin for a proof.
Also structured triakis tetrahedral numbers (vertex structure 7) (cf. A100175 = alternate vertex); structured tetragonal prism numbers (vertex structure 7) (cf. A100177 = structured prisms); structured hexagonal diamond numbers (vertex structure 7) (cf. A100178 = alternate vertex; A000447 = structured diamonds); and structured trigonal anti-diamond numbers (vertex structure 7) (cf. A100188 = structured anti-diamonds). Cf. A100145 for more on structured polyhedral numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Schlaefli symbol for this polyhedron: {4, 3}.
Least multiple of n such that every partial sum is a square. - Amarnath Murthy, Sep 09 2005
Draw a regular hexagon. Construct points on each side of the hexagon such that these points divide each side into equally sized segments (i.e., a midpoint on each side or two points on each side placed to divide each side into three equally sized segments or so on), do the same construction for every side of the hexagon so that each side is equally divided in the same way. Connect all such points to each other with lines that are parallel to at least one side of the polygon. The result is a triangular tiling of the hexagon and the creation of a number of smaller regular hexagons. The equation gives the total number of regular hexagons found where n = the number of points drawn + 1. For example, if 1 point is drawn on each side then n = 1 + 1 = 2 and a(n) = 2^3 = 8 so there are 8 regular hexagons in total. If 2 points are drawn on each side then n = 2 + 1 = 3 and a(n) = 3^3 = 27 so there are 27 regular hexagons in total. - Noah Priluck (npriluck(AT)gmail.com), May 02 2007
The solutions of the Diophantine equation: (X/Y)^2 - X*Y = 0 are of the form: (n^3, n) with n >= 1. The solutions of the Diophantine equation: (m^2)*(X/Y)^2k - XY = 0 are of the form: (m*n^(2k + 1), m*n^(2k - 1)) with m >= 1, k >= 1 and n >= 1. The solutions of the Diophantine equation: (m^2)*(X/Y)^(2k + 1) - XY = 0 are of the form: (m*n^(k + 1), m*n^k) with m >= 1, k >= 1 and n >= 1. - Mohamed Bouhamida, Oct 04 2007
Except for the first two terms, the sequence corresponds to the Wiener indices of C_{2n} i.e., the cycle on 2n vertices (n > 1). - K.V.Iyer, Mar 16 2009
Totally multiplicative sequence with a(p) = p^3 for prime p. - Jaroslav Krizek, Nov 01 2009
Sums of rows of the triangle in A176271, n > 0. - Reinhard Zumkeller, Apr 13 2010
One of the 5 Platonic polyhedral (tetrahedral, cube, octahedral, dodecahedral and icosahedral) numbers (cf. A053012). - Daniel Forgues, May 14 2010
Numbers n for which order of torsion subgroup t of the elliptic curve y^2 = x^3 - n is t = 2. - Artur Jasinski, Jun 30 2010
The sequence with the lengths of the Pisano periods mod k is 1, 2, 3, 4, 5, 6, 7, 8, 3, 10, 11, 12, 13, 14, 15, 16, 17, 6, 19, 20, ... for k >= 1, apparently multiplicative and derived from A000027 by dividing every ninth term through 3. Cubic variant of A186646. - R. J. Mathar, Mar 10 2011
The number of atoms in a bcc (body-centered cubic) rhombic hexahedron with n atoms along one edge is n^3 (T. P. Martin, Shells of atoms, eq. (8)). - Brigitte Stepanov, Jul 02 2011
The inverse binomial transform yields the (finite) 0, 1, 6, 6 (third row in A019538 and A131689). - R. J. Mathar, Jan 16 2013
Twice the area of a triangle with vertices at (0, 0), (t(n - 1), t(n)), and (t(n), t(n - 1)), where t = A000217 are triangular numbers. - J. M. Bergot, Jun 25 2013
If n > 0 is not congruent to 5 (mod 6) then A010888(a(n)) divides a(n). - Ivan N. Ianakiev, Oct 16 2013
For n > 2, a(n) = twice the area of a triangle with vertices at points (binomial(n,3),binomial(n+2,3)), (binomial(n+1,3),binomial(n+1,3)), and (binomial(n+2,3),binomial(n,3)). - J. M. Bergot, Jun 14 2014
Determinants of the spiral knots S(4,k,(1,1,-1)). a(k) = det(S(4,k,(1,1,-1))). - Ryan Stees, Dec 14 2014
One of the oldest-known examples of this sequence is shown in the Senkereh tablet, BM 92698, which displays the first 32 terms in cuneiform. - Charles R Greathouse IV, Jan 21 2015
From Bui Quang Tuan, Mar 31 2015: (Start)
We construct a number triangle from the integers 1, 2, 3, ... 2*n-1 as follows. The first column contains all the integers 1, 2, 3, ... 2*n-1. Each succeeding column is the same as the previous column but without the first and last items. The last column contains only n. The sum of all the numbers in the triangle is n^3.
Here is the example for n = 4, where 1 + 2*2 + 3*3 + 4*4 + 3*5 + 2*6 + 7 = 64 = a(4):
1
2 2
3 3 3
4 4 4 4
5 5 5
6 6
7
(End)
For n > 0, a(n) is the number of compositions of n+11 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
Number of inequivalent face colorings of the cube using at most n colors such that each color appears at least twice. - David Nacin, Feb 22 2017
Consider A = {a,b,c} a set with three distinct members. The number of subsets of A is 8, including {a,b,c} and the empty set. The number of subsets from each of those 8 subsets is 27. If the number of such iterations is n, then the total number of subsets is a(n-1). - Gregory L. Simay, Jul 27 2018
By Fermat's Last Theorem, these are the integers of the form x^k with the least possible value of k such that x^k = y^k + z^k never has a solution in positive integers x, y, z for that k. - Felix Fröhlich, Jul 27 2018
REFERENCES
Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 191.
R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
T. Aaron Gulliver, "Sequences from cubes of integers", International Mathematical Journal, 4 (2003), no. 5, 439 - 445. See http://www.m-hikari.com/z2003.html for information about this journal. [I expanded the reference to make this easier to find. - N. J. A. Sloane, Feb 18 2019]
J. Propp and A. Propp-Gubin, "Counting Triangles in Triangles", Pi Mu Epsilon Journal (to appear).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. Wells, You Are A Mathematician, pp. 238-241, Penguin Books 1995.
LINKS
British National Museum, Tablet 92698
N. Brothers, S. Evans, L. Taalman, L. Van Wyk, D. Witczak, and C. Yarnall, Spiral knots, Missouri J. of Math. Sci., 22 (2010).
M. DeLong, M. Russell, and J. Schrock, Colorability and determinants of T(m,n,r,s) twisted torus knots for n equiv. +/-1(mod m), Involve, Vol. 8 (2015), No. 3, 361-384.
Ralph Greenberg, Math For Poets
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets [Cached version at the Wayback Machine]
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75. - fixed by Felix Fröhlich, Jun 16 2014
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (8).
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003.
Ed Pegg, Jr., Sequence Pictures, Math Games column, Dec 08 2003 [Cached copy, with permission (pdf only)]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
James Propp and Adam Propp-Gubin, Counting Triangles in Triangles, arXiv:2409.17117 [math.CO], 25 September 2024.
Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42. doi:10.4169/math.mag.85.1.36.
Eric Weisstein's World of Mathematics, Cubic Number, and Hex Pyramidal Number
Ronald Yannone, Hilbert Matrix Analyses
FORMULA
a(n) = Sum_{i=0..n-1} A003215(i).
Multiplicative with a(p^e) = p^(3e). - David W. Wilson, Aug 01 2001
G.f.: x*(1+4*x+x^2)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
Dirichlet generating function: zeta(s-3). - Franklin T. Adams-Watters, Sep 11 2005, Amarnath Murthy, Sep 09 2005
E.g.f.: (1+3*x+x^2)*x*exp(x). - Franklin T. Adams-Watters, Sep 11 2005 - Amarnath Murthy, Sep 09 2005
a(n) = Sum_{i=1..n} (Sum_{j=i..n+i-1} A002024(j,i)). - Reinhard Zumkeller, Jun 24 2007
a(n) = lcm(n, (n - 1)^2) - (n - 1)^2. E.g.: lcm(1, (1 - 1)^2) - (1 - 1)^2 = 0, lcm(2, (2 - 1)^2) - (2 - 1)^2 = 1, lcm(3, (3 - 1)^2) - (3 - 1)^2 = 8, ... - Mats Granvik, Sep 24 2007
Starting (1, 8, 27, 64, 125, ...), = binomial transform of [1, 7, 12, 6, 0, 0, 0, ...]. - Gary W. Adamson, Nov 21 2007
a(n) = A007531(n) + A000567(n). - Reinhard Zumkeller, Sep 18 2009
a(n) = binomial(n+2,3) + 4*binomial(n+1,3) + binomial(n,3). [Worpitzky's identity for cubes. See. e.g., Graham et al., eq. (6.37). - Wolfdieter Lang, Jul 17 2019]
a(n) = n + 6*binomial(n+1,3) = binomial(n,1)+6*binomial(n+1,3). - Ron Knott, Jun 10 2019
A010057(a(n)) = 1. - Reinhard Zumkeller, Oct 22 2011
a(n) = A000537(n) - A000537(n-1), difference between 2 squares of consecutive triangular numbers. - Pierre CAMI, Feb 20 2012
a(n) = A048395(n) - 2*A006002(n). - J. M. Bergot, Nov 25 2012
a(n) = 1 + 7*(n-1) + 6*(n-1)*(n-2) + (n-1)*(n-2)*(n-3). - Antonio Alberto Olivares, Apr 03 2013
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 6. - Ant King Apr 29 2013
a(n) = A000330(n) + Sum_{i=1..n-1} A014105(i), n >= 1. - Ivan N. Ianakiev, Sep 20 2013
a(k) = det(S(4,k,(1,1,-1))) = k*b(k)^2, where b(1)=1, b(2)=2, b(k) = 2*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2). - Ryan Stees, Dec 14 2014
For n >= 1, a(n) = A152618(n-1) + A033996(n-1). - Bui Quang Tuan, Apr 01 2015
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Jon Tavasanis, Feb 21 2016
a(n) = n + Sum_{j=0..n-1} Sum_{k=1..2} binomial(3,k)*j^(3-k). - Patrick J. McNab, Mar 28 2016
a(n) = A000292(n-1) * 6 + n. - Zhandos Mambetaliyev, Nov 24 2016
a(n) = n*binomial(n+1, 2) + 2*binomial(n+1, 3) + binomial(n,3). - Tony Foster III, Nov 14 2017
From Amiram Eldar, Jul 02 2020: (Start)
Sum_{n>=1} 1/a(n) = zeta(3) (A002117).
Sum_{n>=1} (-1)^(n+1)/a(n) = 3*zeta(3)/4 (A197070). (End)
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)/Pi.
Product_{n>=2} (1 - 1/a(n)) = cosh(sqrt(3)*Pi/2)/(3*Pi). (End)
a(n) = Sum_{d|n} sigma_3(d)*mu(n/d) = Sum_{d|n} A001158(d)*A008683(n/d). Moebius transform of sigma_3(n). - Ridouane Oudra, Apr 15 2021
EXAMPLE
For k=3, b(3) = 2 b(2) - b(1) = 4-1 = 3, so det(S(4,3,(1,1,-1))) = 3*3^2 = 27.
For n=3, a(3) = 3 + (3*0^2 + 3*0 + 3*1^2 + 3*1 + 3*2^2 + 3*2) = 27. - Patrick J. McNab, Mar 28 2016
MAPLE
A000578 := n->n^3;
seq(A000578(n), n=0..50);
isA000578 := proc(r)
local p;
if r = 0 or r =1 then
true;
else
for p in ifactors(r)[2] do
if op(2, p) mod 3 <> 0 then
return false;
end if;
end do:
true ;
end if;
end proc: # R. J. Mathar, Oct 08 2013
MATHEMATICA
Table[n^3, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
CoefficientList[Series[x (1 + 4 x + x^2)/(1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Jul 05 2014 *)
Accumulate[Table[3n^2+3n+1, {n, 0, 20}]] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 8, 27, 64}, 20](* Harvey P. Dale, Aug 18 2018 *)
PROG
(PARI) A000578(n)=n^3 \\ M. F. Hasler, Apr 12 2008
(PARI) is(n)=ispower(n, 3) \\ Charles R Greathouse IV, Feb 20 2012
(Haskell)
a000578 = (^ 3)
a000578_list = 0 : 1 : 8 : zipWith (+)
(map (+ 6) a000578_list)
(map (* 3) $ tail $ zipWith (-) (tail a000578_list) a000578_list)
-- Reinhard Zumkeller, Sep 05 2015, May 24 2012, Oct 22 2011
(Maxima) A000578(n):=n^3$
makelist(A000578(n), n, 0, 30); /* Martin Ettl, Nov 03 2012 */
(Magma) [ n^3 : n in [0..50] ]; // Wesley Ivan Hurt, Jun 14 2014
(Magma) I:=[0, 1, 8, 27]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jul 05 2014
(Python)
A000578_list, m = [], [6, -6, 1, 0]
for _ in range(10**2):
A000578_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
(Scheme) (define (A000578 n) (* n n n)) ;; Antti Karttunen, Oct 06 2017
CROSSREFS
(1/12)*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.
For sums of cubes, cf. A000537 (partial sums), A003072, A003325, A024166, A024670, A101102 (fifth partial sums).
Cf. A001158 (inverse Möbius transform), A007412 (complement), A030078(n) (cubes of primes), A048766, A058645 (binomial transform), A065876, A101094, A101097.
Subsequence of A145784.
Cf. A260260 (comment). - Bruno Berselli, Jul 22 2015
Cf. A000292 (tetrahedral numbers), A005900 (octahedral numbers), A006566 (dodecahedral numbers), A006564 (icosahedral numbers).
Cf. A098737 (main diagonal).
KEYWORD
nonn,core,easy,nice,mult
STATUS
approved
Pentagonal pyramidal numbers: a(n) = n^2*(n+1)/2.
(Formerly M4116 N1709)
+10
143
0, 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, 726, 936, 1183, 1470, 1800, 2176, 2601, 3078, 3610, 4200, 4851, 5566, 6348, 7200, 8125, 9126, 10206, 11368, 12615, 13950, 15376, 16896, 18513, 20230, 22050, 23976, 26011, 28158, 30420, 32800, 35301, 37926, 40678
OFFSET
0,3
COMMENTS
a(n) = n^2(n+1)/2 is half the number of colorings of three points on a line with n+1 colors. - R. H. Hardin, Feb 23 2002
Sum of n smallest multiples of n. - Amarnath Murthy, Sep 20 2002
a(n) = number of (n+6)-bit binary sequences with exactly 7 1's none of which is isolated. A 1 is isolated if its immediate neighbor(s) are 0. - David Callan, Jul 15 2004
Also as a(n) = (1/6)*(3*n^3+3*n^2), n > 0: structured trigonal prism numbers (cf. A100177 - structured prisms; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Kekulé numbers for certain benzenoids. - Emeric Deutsch, Nov 18 2005
If Y is a 3-subset of an n-set X then, for n >= 5, a(n-4) is the number of 5-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
a(n-1), n >= 2, is the number of ways to have n identical objects in m=2 of altogether n distinguishable boxes (n-2 boxes stay empty). - Wolfdieter Lang, Nov 13 2007
a(n+1) is the convolution of (n+1) and (3n+1). - Paul Barry, Sep 18 2008
The number of 3-character strings from an alphabet of n symbols, if a string and its reversal are considered to be the same.
Partial sums give A001296. - Jonathan Vos Post, Mar 26 2011
a(n-1):=N_1(n), n >= 1, is the number of edges of n planes in generic position in three-dimensional space. See a comment under A000125 for general arrangement. Comment to Arnold's problem 1990-11, see the Arnold reference, p.506. - Wolfdieter Lang, May 27 2011
Partial sums of pentagonal numbers A000326. - Reinhard Zumkeller, Jul 07 2012
From Ant King, Oct 23 2012: (Start)
For n > 0, the digital roots of this sequence A010888(A002411(n)) form the purely periodic 9-cycle {1,6,9,4,3,9,7,9,9}.
For n > 0, the units' digits of this sequence A010879(A002411(n)) form the purely periodic 20-cycle {1,6,8,0,5,6,6,8,5,0,6,6,3,0,0,6,1,8,0,0}.
(End)
a(n) is the number of inequivalent ways to color a path graph having 3 nodes using at most n colors. Note, here there is no restriction on the color of adjacent nodes as in the above comment by R. H. Hardin (Feb 23 2002). Also, here the structures are counted up to graph isomorphism, where as in the above comment the "three points on a line" are considered to be embedded in the plane. - Geoffrey Critzer, Mar 20 2013
After 0, row sums of the triangle in A101468. - Bruno Berselli, Feb 10 2014
Latin Square Towers: Take a Latin square of order n, with symbols from 1 to n, and replace each symbol x with a tower of height x. Then the total number of unit cubes used is a(n). - Arun Giridhar, Mar 29 2015
This is the case k = n+4 of b(n,k) = n*((k-2)*n-(k-4))/2, which is the n-th k-gonal number. Therefore, this is the 3rd upper diagonal of the array in A139600. - Luciano Ancora, Apr 11 2015
For n > 0, a(n) is the number of compositions of n+7 into n parts avoiding the part 2. - Milan Janjic, Jan 07 2016
Also the Wiener index of the n-antiprism graph. - Eric W. Weisstein, Sep 07 2017
For n > 0, a(2n+1) is the number of non-isomorphic 5C_m-snakes, where m = 2n+1 or m = 2n (for n >= 2). A kC_n-snake is a connected graph in which the k >= 2 blocks are isomorphic to the cycle C_n and the block-cutpoint graph is a path. - Christian Barrientos, May 15 2019
For n >= 1, a(n-1) is the number of 0°- and 45°-tilted squares that can be drawn by joining points in an n X n lattice. - Paolo Xausa, Apr 13 2021
a(n) is the number of all possible products of n rolls of a six-sided die. This can be easily seen by the recursive formula a(n) = a(n - 1) + 2 * binomial(n, 2) + binomial(n + 1, 2). - Rafal Walczak, Jun 15 2024
REFERENCES
V. I. Arnold (ed.), Arnold's Problems, Springer, 2004, comments on Problem 1990-11 (p. 75), pp. 503-510. Numbers N_1.
Christian Barrientos, Graceful labelings of cyclic snakes, Ars Combin., Vol. 60 (2001), pp. 85-96.
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 194.
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 166, Table 10.4/I/5).
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 93.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see Vol. 2, p. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Somaya Barati, Beáta Bényi, Abbas Jafarzadeh and Daniel Yaqubi, Mixed restricted Stirling numbers, arXiv:1812.02955 [math.CO], 2018.
Phyllis Chinn and Silvia Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seq., Vol. 6 (2003), Article 03.2.3.
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 17.
Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, Vol 19 (2016), Article 16.7.3.
C. Krishnamachaki, The operator (xD)^n, J. Indian Math. Soc., Vol. 15 (1923), pp. 3-4. [Annotated scanned copy]
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Eric Weisstein's World of Mathematics, Pentagonal Pyramidal Number.
Eric Weisstein's World of Mathematics, Wiener Index.
FORMULA
Average of n^2 and n^3.
G.f.: x*(1+2*x)/(1-x)^4. - Simon Plouffe in his 1992 dissertation
a(n) = n*Sum_{k=0..n} (n-k) = n*Sum_{k=0..n} k. - Paul Barry, Jul 21 2003
a(n) = n*A000217(n). - Xavier Acloque, Oct 27 2003
a(n) = (1/2)*Sum_{j=1..n} Sum_{i=1..n} (i+j) = (1/2)*(n^2+n^3) = (1/2)*A011379(n). - Alexander Adamchuk, Apr 13 2006
Row sums of triangle A127739, triangle A132118; and binomial transform of [1, 5, 7, 3, 0, 0, 0, ...] = (1, 6, 18, 40, 75, ...). - Gary W. Adamson, Aug 10 2007
G.f.: x*F(2,3;1;x). - Paul Barry, Sep 18 2008
Sum_{j>=1} 1/a(j) = hypergeom([1, 1, 1], [2, 3], 1) = -2 + 2*zeta(2) = A195055 - 2. - Stephen Crowley, Jun 28 2009
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=1, a(2)=6, a(3)=18. - Harvey P. Dale, Oct 20 2011
From Ant King, Oct 23 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 3.
a(n) = (n+1)*(2*A000326(n)+n)/6 = A000292(n) + 2*A000292(n-1).
a(n) = A000330(n)+A000292(n-1) = A000217(n) + 3*A000292(n-1).
a(n) = binomial(n+2,3) + 2*binomial(n+1,3).
(End)
a(n) = (A000330(n) + A002412(n))/2 = (A000292(n) + A002413(n))/2. - Omar E. Pol, Jan 11 2013
a(n) = (24/(n+3)!)*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*j^(n+3). - Vladimir Kruchinin, Jun 04 2013
Sum_{n>=1} a(n)/n! = (7/2)*exp(1). - Richard R. Forberg, Jul 15 2013
E.g.f.: x*(2 + 4*x + x^2)*exp(x)/2. - Ilya Gutkovskiy, May 31 2016
From R. J. Mathar, Jul 28 2016: (Start)
a(n) = A057145(n+4,n).
a(n) = A080851(3,n-1). (End)
For n >= 1, a(n) = (Sum_{i=1..n} i^2) + Sum_{i=0..n-1} i^2*((i+n) mod 2). - Paolo Xausa, Apr 13 2021
a(n) = Sum_{k=1..n} GCD(k,n) * LCM(k,n). - Vaclav Kotesovec, May 22 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 2 + Pi^2/6 - 4*log(2). - Amiram Eldar, Jan 03 2022
EXAMPLE
a(3)=18 because 4 identical balls can be put into m=2 of n=4 distinguishable boxes in binomial(4,2)*(2!/(1!*1!) + 2!/2!) = 6*(2+1) = 18 ways. The m=2 part partitions of 4, namely (1,3) and (2,2), specify the filling of each of the 6 possible two-box choices. - Wolfdieter Lang, Nov 13 2007
MAPLE
seq(n^2*(n+1)/2, n=0..40);
MATHEMATICA
Table[n^2 (n + 1)/2, {n, 0, 40}]
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 6, 18}, 50] (* Harvey P. Dale, Oct 20 2011 *)
Nest[Accumulate, Range[1, 140, 3], 2]] (* Vladimir Joseph Stephan Orlovsky, Jan 21 2012 *)
CoefficientList[Series[x (1 + 2 x) / (1 - x)^4, {x, 0, 45}], x] (* Vincenzo Librandi, Jan 08 2016 *)
PROG
(PARI) a(n)=n^2*(n+1)/2
(Haskell)
a002411 n = n * a000217 n -- Reinhard Zumkeller, Jul 07 2012
(Magma) [n^2*(n+1)/2: n in [0..40]]; // Wesley Ivan Hurt, May 25 2014
(PARI) concat(0, Vec(x*(1+2*x)/(1-x)^4 + O(x^100))) \\ Altug Alkan, Jan 07 2016
(GAP) List([0..45], n->n^2*(n+1)/2); # Muniru A Asiru, Feb 19 2018
CROSSREFS
A006002(n) = -a(-1-n).
a(n) = A093560(n+2, 3), (3, 1)-Pascal column.
A row or column of A132191.
Second column of triangle A103371.
Cf. similar sequences listed in A237616.
KEYWORD
nonn,easy,nice
STATUS
approved
The n-th n-gonal number: a(n) = n*(n^2 - 3*n + 4)/2.
+10
37
0, 1, 2, 6, 16, 35, 66, 112, 176, 261, 370, 506, 672, 871, 1106, 1380, 1696, 2057, 2466, 2926, 3440, 4011, 4642, 5336, 6096, 6925, 7826, 8802, 9856, 10991, 12210, 13516, 14912, 16401, 17986, 19670, 21456, 23347, 25346, 27456, 29680, 32021
OFFSET
0,3
COMMENTS
Binomial transform of (0,1,0,3,0,0,0,...). - Paul Barry, Sep 14 2006
Also the number of permutations of length n which can be sorted by a single cut-and-paste move (in the sense of Cranston, Sudborough, and West). - Vincent Vatter, Aug 21 2013
Main diagonal of A317302. - Omar E. Pol, Aug 11 2018
LINKS
D. W. Cranston, I. H. Sudborough, and D. B. West, Short proofs for cut-and-paste sorting of permutations, Discrete Math. 307, 22 (2007), 2866-2870.
Cheyne Homberger, Patterns in Permutations and Involutions: A Structural and Enumerative Approach, arXiv preprint 1410.2657 [math.CO], 2014.
C. Homberger, V. Vatter, On the effective and automatic enumeration of polynomial permutation classes, arXiv preprint arXiv:1308.4946 [math.CO], 2013-2015.
FORMULA
a(n) = (n*(n-2)^2 + n^2)/2.
E.g.f.: exp(x)*x*(1+x^2/2). - Paul Barry, Sep 14 2006
G.f.: x*(1-2*x+4*x^2)/(1-x)^4. - R. J. Mathar, Sep 02 2008
a(n) = A057145(n,n). - R. J. Mathar, Jul 28 2016
a(n) = A000124(n-2) * n. - Bruce J. Nicholson, Jul 13 2018
a(n) = Sum_{i=0..n-1} (i*(n-2) + 1). - Ivan N. Ianakiev, Sep 25 2020
MAPLE
A060354 := proc(n)
(n*(n-2)^2+n^2)/2 ;
end proc: # R. J. Mathar, Jul 28 2016
MATHEMATICA
Table[(n (n-2)^2+n^2)/2, {n, 0, 50}] (* Harvey P. Dale, Aug 05 2011 *)
CoefficientList[Series[x (1 - 2 x + 4 x^2) / (1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Feb 16 2015 *)
Table[PolygonalNumber[n, n], {n, 0, 50}] (* Harvey P. Dale, Mar 07 2016 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 2, 6}, 50] (* Harvey P. Dale, Mar 07 2016 *)
PROG
(PARI) { for (n=0, 1000, write("b060354.txt", n, " ", (n*(n - 2)^2 + n^2)/2); ) } \\ Harry J. Smith, Jul 04 2009
(Magma) [(n*(n-2)^2+n^2)/2: n in [0..50]]; // Vincenzo Librandi, Feb 16 2015
CROSSREFS
First differences of A004255.
KEYWORD
easy,nice,nonn
AUTHOR
Hareendra Yalamanchili (hyalaman(AT)mit.edu), Apr 01 2001
STATUS
approved
a(n) = n*(n + 1)*(n^2 - 3*n + 5)/6.
(Formerly M2839)
+10
19
0, 1, 3, 10, 30, 75, 161, 308, 540, 885, 1375, 2046, 2938, 4095, 5565, 7400, 9656, 12393, 15675, 19570, 24150, 29491, 35673, 42780, 50900, 60125, 70551, 82278, 95410, 110055, 126325, 144336, 164208, 186065, 210035, 236250, 264846, 295963, 329745, 366340
OFFSET
0,3
COMMENTS
Structured meta-pyramidal numbers, the n-th number from an n-gonal pyramidal number sequence. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
The Gi4 triangle sums of A139600 are given by the terms of this sequence. For the definitions of the Gi4 and other triangle sums see A180662. - Johannes W. Meijer, Apr 29 2011
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. S. Kluk and N. J. A. Sloane, Correspondence, 1979.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = (1/6)*(n^4 - 2*n^3 + 2*n^2 + 5*n). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
a(n) = binomial(n+3,4) - 2*binomial(n+2,4) + 5*binomial(n+1,4). - Johannes W. Meijer, Apr 29 2011
MAPLE
A006484:=-(1-2*z+5*z**2)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
lst={}; Do[AppendTo[lst, n*(n+1)*(n^2-3*n+5)/6], {n, 0, 4!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 19 2008 *)
Table[n(n+1) (n^2-3n+5)/6, {n, 0, 40}] (* Harvey P. Dale, May 29 2019 *)
PROG
(Magma) [n*(n+1)*(n^2 - 3*n + 5)/6: n in [0..50]]; // Vincenzo Librandi, May 16 2011
(PARI) a(n)=n*(n+1)*(n^2-3*n+5)/6 \\ Charles R Greathouse IV, Oct 18 2022
CROSSREFS
Cf. other meta sequences: A100177: prism; A000447: "polar" diamond; A059722: "equatorial diamond"; A100185: anti-prism; A100188: "polar" anti-diamond; and A100189: "equatorial" anti-diamond. Cf. A100145 for more on structured numbers.
Cf. A000332.
KEYWORD
nonn,easy
AUTHOR
Dennis S. Kluk (mathemagician(AT)ameritech.net)
STATUS
approved
a(n) = (2*n - 1)*n^2.
+10
16
0, 1, 12, 45, 112, 225, 396, 637, 960, 1377, 1900, 2541, 3312, 4225, 5292, 6525, 7936, 9537, 11340, 13357, 15600, 18081, 20812, 23805, 27072, 30625, 34476, 38637, 43120, 47937, 53100, 58621, 64512
OFFSET
0,3
COMMENTS
Structured hexagonal prism numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of divisors of 60^(n-1) for n>0. - J. Lowell, Aug 30 2008
The sum of the 2*n+1 numbers between n*(n+1) and (n+1)*(n+2) gives a(n+1). - J. M. Bergot, Apr 17 2013
Partial sums of A080859. - J. M. Bergot, Jul 03 2013
a(n) = number of 2 X 2 matrices having all elements in {0..n} with determinant = permanent. - Indranil Ghosh, Dec 26 2016
Number of additions and multiplications needed to multiply two n X n matrices naively. - Charles R Greathouse IV, Jan 19 2018
LINKS
M. Janjic and B. Petkovic, A counting function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
FORMULA
a(n) = A000578(n) + A045991(n). - Zerinvary Lajos, Jun 11 2008
a(n) = A199771(2*n-1) for n > 0. - Reinhard Zumkeller, Nov 23 2011
G.f.: x*(1+8*x+3*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + 12, a(0)=1, a(1)=1, a(2)=12. - G. C. Greubel, Jul 31 2015
E.g.f.: x*(2*x^2 + 5*x + 1)*exp(x). - G. C. Greubel, Jul 31 2015
a(n) = Sum_{i=0..n-1} n*(4*i+1) for n>0. - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = 4*log(2) - Pi^2/6. - Vaclav Kotesovec, Oct 04 2016
a(n) = Sum_{i=n^2-n+1..n^2+n-1} i. - Wesley Ivan Hurt, Dec 27 2016
From Peter Bala, Jan 30 2019: (Start)
Let a(n,x) = Product_{k = 0..n} (x - k)/(x + k). Then for positive integer x we have (2*x - 1)*x^2 = Sum_{n >= 0} ((n+1)^5 + n^5)*a(n,x) and (2*x - 1)*x = Sum_{n >= 0} ((n+1)^4 - n^4)*a(n,x). Both identities are also valid for complex x in the half-plane Re(x) > 2. See the Bala link in A036970. Cf. A272378. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi - Pi^2/12 - 2*log(2). - Amiram Eldar, Jul 12 2020
MAPLE
[(2*n-1)*n^2$n=0..40]; # Muniru A Asiru, Feb 05 2019
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[2]==12, a[n]== 3*a[n-1] - 3*a[n-2] + a[n-3] + 12}, a, {n, 30}] (* G. C. Greubel, Jul 31 2015 *)
Table[(2 n - 1) n^2, {n, 0, 40}] (* Bruno Berselli, Sep 08 2015 *)
PROG
(Magma) [(2*n-1)*n^2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
(PARI) a(n)=(2*n-1)*n^2 \\ Charles R Greathouse IV, Oct 07 2015
(GAP) List([0..40], n->(2*n-1)*n^2); # Muniru A Asiru, Feb 05 2019
CROSSREFS
Cf. A100177 (structured prisms); A100145 (more on structured numbers).
Cf. A000578, A045991, A000384, A080859 (first diffs), A103220 (partial sums).
Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.
KEYWORD
nonn,easy
STATUS
approved
a(n) = n^2*(5*n-3)/2.
+10
6
0, 1, 14, 54, 136, 275, 486, 784, 1184, 1701, 2350, 3146, 4104, 5239, 6566, 8100, 9856, 11849, 14094, 16606, 19400, 22491, 25894, 29624, 33696, 38125, 42926, 48114, 53704, 59711, 66150, 73036, 80384, 88209, 96526, 105350, 114696, 124579, 135014, 146016
OFFSET
0,3
COMMENTS
Structured heptagonal prism numbers. - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Apart from 0, partial sums of A220083. [Bruno Berselli, Dec 11 2012]
REFERENCES
W. A. Whitworth, DCC Exercises in Choice and Chance, Stechert, NY, 1945, p. 29.
FORMULA
a(n) = (1/6)*(15*n^3-9*n^2). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
G.f.: x*(1+10*x+4*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n-1} n*(5*i+1) for n>0. [Bruno Berselli, Sep 08 2015]
Sum_{n>=1} 1/a(n) = 1.1080093773051638036... = (sqrt(5*(5 - 2*sqrt(5)))*Pi - Pi^2 - 5*sqrt(5)*arccoth(sqrt(5)) + (25*log(5))/2)/9. - Vaclav Kotesovec, Oct 04 2016
MAPLE
A006597:=n->n^2*(5*n-3)/2; seq(A006597(n), n=0..40); # Wesley Ivan Hurt, Mar 11 2014
MATHEMATICA
Table[n^2*(5*n-3)/2, {n, 0, 40}] (* Wesley Ivan Hurt, Mar 11 2014 *)
PROG
(Magma) [n^2*(5*n-3)/2: n in [0..40]]; // Vincenzo Librandi, Jul 20 2011
(PARI) a(n)=n^2*(5*n-3)/2; \\ Joerg Arndt, Jul 20 2011
CROSSREFS
Cf. A100177 - structured prisms; A100145 for more on structured numbers.
Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.
KEYWORD
nonn,easy
EXTENSIONS
Name corrected by Arkadiusz Wesolowski, Jul 20 2011
STATUS
approved
House numbers (version 2): a(n) = (n+1)^3 + (n+1)*Sum_{i=0..n} i.
+10
5
1, 10, 36, 88, 175, 306, 490, 736, 1053, 1450, 1936, 2520, 3211, 4018, 4950, 6016, 7225, 8586, 10108, 11800, 13671, 15730, 17986, 20448, 23125, 26026, 29160, 32536, 36163, 40050, 44206, 48640, 53361, 58378, 63700, 69336, 75295, 81586, 88218
OFFSET
0,2
COMMENTS
Also as a(n) = (1/6)*(9*n^3-3*n^2), n>0: structured pentagonal prism numbers (Cf. A100177 - structured prisms; A100145 for more on structured numbers). - James A. Record (james.record(AT)gmail.com), Nov 07 2004
Number of inequivalent tetrahedral edge colorings using at most n+1 colors so that no color appears only once. - David Nacin, Feb 22 2017
FORMULA
a(n) = A000578(n+1) + (n+1)*A000217(n).
a(n) = (1/2) *(3*n+2)*(n+1)^2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=10, a(2)=36, a(3)=88. - Harvey P. Dale, Jun 26 2011
G.f.: (1+6*x+2*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n} (n+1)*(3*i+1). - Bruno Berselli, Sep 08 2015
Sum_{n>=0} 1/a(n) = 9*log(3) - sqrt(3)*Pi - Pi^2/3 = 1.15624437161388... . - Vaclav Kotesovec, Oct 04 2016
EXAMPLE
* *
a(2) = * * + * * = 10.
* * * *
MATHEMATICA
Table[((1+n)^2*(2+3n))/2, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 10, 36, 88}, 40] (* Harvey P. Dale, Jun 26 2011 *)
PROG
(Magma) [(3*n+2)*(n+1)^2/2: n in [0..40]]; // Vincenzo Librandi, Jul 19 2011
(PARI) a(n)=(1/2)*(3*n+2)*(n+1)^2 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.
KEYWORD
nonn,nice,easy
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 28 1999
STATUS
approved
Structured octagonal prism numbers.
+10
3
1, 16, 63, 160, 325, 576, 931, 1408, 2025, 2800, 3751, 4896, 6253, 7840, 9675, 11776, 14161, 16848, 19855, 23200, 26901, 30976, 35443, 40320, 45625, 51376, 57591, 64288, 71485, 79200, 87451, 96256, 105633, 115600, 126175, 137376, 149221
OFFSET
1,2
COMMENTS
Number of divisors of 120^(n-1). - J. Lowell, Aug 30 2008
Partial sums of A214675. - J. M. Bergot, Jul 08 2013
FORMULA
a(n) = 3*n^3 - 2*n^2.
G.f.: x*(1+12*x+5*x^2)/(1-x)^4. - Colin Barker, Jun 08 2012
a(n) = Sum_{i=0..n-1} n*(6*i+1). - Bruno Berselli, Sep 08 2015
Sum_{n>=1} 1/a(n) = sqrt(3)*Pi/8 - Pi^2/12 + 9*log(3)/8 = 1.0936465529153418... . - Vaclav Kotesovec, Oct 04 2016
a(n) = n * A000567(n) = n^2 * A016777(n-1). - Bruce J. Nicholson, Aug 10 2017
MAPLE
[seq(3*n^3-2*n^2, n=1..47)]; # Zerinvary Lajos, Jun 29 2006
MATHEMATICA
f[n_] := 3 n^3 - 2 n^2; Table[f[n], {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Apr 27 2010 *)
PROG
(Magma) [3*n^3-2*n^2: n in [1..50] ]; // Vincenzo Librandi, Aug 02 2011
(PARI) a(n)=3*n^3-2*n^2 \\ Charles R Greathouse IV, Aug 10 2017
CROSSREFS
Cf. A100177 - structured prisms; A100145 for more on structured numbers.
Cf. similar sequences, with the formula (k*n-k+2)*n^2/2, listed in A262000.
KEYWORD
nonn,easy
AUTHOR
James A. Record (james.record(AT)gmail.com), Nov 07 2004
EXTENSIONS
More terms from Zerinvary Lajos, Jun 29 2006
STATUS
approved

Search completed in 0.012 seconds