[go: up one dir, main page]

login
A195055
Decimal expansion of Pi^2/3.
15
3, 2, 8, 9, 8, 6, 8, 1, 3, 3, 6, 9, 6, 4, 5, 2, 8, 7, 2, 9, 4, 4, 8, 3, 0, 3, 3, 3, 2, 9, 2, 0, 5, 0, 3, 7, 8, 4, 3, 7, 8, 9, 9, 8, 0, 2, 4, 1, 3, 5, 9, 6, 8, 7, 5, 4, 7, 1, 1, 1, 6, 4, 5, 8, 7, 4, 0, 0, 1, 4, 9, 4, 0, 8, 0, 6, 4, 0, 1, 7, 4, 7, 6, 6, 7, 2, 5, 7, 8, 0, 1, 2, 3, 9, 5, 1, 7, 4, 1, 0, 6, 0, 8, 0, 0
OFFSET
1,1
REFERENCES
Marc Briane and Gilles Pagès, Théorie de l'Intégration, Vuibert, 2004, 3ème édition, exercice 12.15, p. 256.
LINKS
George E. Andrews, Partitions with short sequences and mock theta functions, Proceedings of the National Academy of Sciences, Vol. 102, No. 13 (2005), pp. 4666-4671.
FORMULA
Equals 3 + A145426.
Equals -Sum_{n>=1} Psi_2(n), where Psi_2 is the tetragamma function. - Istvan Mezo, Oct 25 2012
Equals Integral_{x=0..1} (log(x)/(x - 1))^2 dx. - Jean-François Alcover, Mar 21 2013
Equals Integral_{x=-oo..oo} x^2/sinh(x)^2 dx. - Amiram Eldar, Aug 06 2020
Equals Integral_{x=0..oo} (log(x+1)/x)^2 dx (reference Briane and Pagès). - Bernard Schott, Feb 13 2022
EXAMPLE
3.289868133696452872944830333292050378438...
MATHEMATICA
RealDigits[Pi^2/3, 10, 105][[1]] (* T. D. Noe, Oct 05 2011 *)
PROG
(Magma) pi:=Pi(RealField(110)); Reverse(Intseq(Floor(10^105*pi^2/3))); // Vincenzo Librandi, Jan 12 2016
(PARI) 2*zeta(2) \\ Charles R Greathouse IV, Jan 20 2022
(PARI) sumnumrat(1/x^2, -oo) \\ Charles R Greathouse IV, Jan 20 2022
CROSSREFS
Cf. A024916 (partial sums of A000203).
Sequence in context: A328645 A021308 A274181 * A214683 A371998 A363816
KEYWORD
nonn,cons
AUTHOR
Omar E. Pol, Oct 04 2011
EXTENSIONS
Extended by T. D. Noe, Oct 05 2011
STATUS
approved