[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a088326 -id:a088326
     Sort: relevance | references | number | modified | created      Format: long | short | data
Piet Hut's "coat-hanger" sequence: unlabeled forests of rooted trees with n edges, where there can be any number of components, the outdegree of each node is <= 2 and the symmetric group acts on the components.
+10
4
1, 1, 2, 4, 8, 16, 34, 71, 153, 332, 730, 1617, 3620, 8148, 18473, 42097, 96420, 221770, 512133, 1186712, 2758707, 6431395, 15033320, 35224825, 82720273, 194655030, 458931973, 1083926784, 2564305754, 6075896220, 14417163975, 34256236039, 81499535281, 194130771581
OFFSET
0,3
COMMENTS
The coat-hangers hang on a single rod and each coat-hanger may have 0, 1 or 2 coat-hangers hanging from it. There are n coat-hangers.
Arises when studying number of different configurations possible in a multiple star system.
LINKS
Piet Hut, Home Page
Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, Toric Richardson varieties of Catalan type and Wedderburn-Etherington numbers, arXiv:2105.12274 [math.AG], 2021.
FORMULA
G.f.: exp(Sum_{k>=1} B(x^k)/k), where B(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 11*x^6 + ... = G001190(x)/x - 1 and G001190 is the g.f. for the Wedderburn-Etherington numbers A001190. - N. J. A. Sloane.
G.f.: 1/Product_{k>0} (1-x^k)^A001190(k+1). - Vladeta Jovovic, May 29 2005
EXAMPLE
The eight possibilities with 4 edges are:
.||||..|||..|.|..||..||...|....|...|.
.......|.../.\...|...||../.\...|...|.
.................|.......|..../.\..|.
...................................|.
MAPLE
b:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(b(n/2)))+add(b(i)*b(n-i), i=1..n/2))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*b(d+1),
d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 11 2017
MATHEMATICA
b[n_] := b[n] = If[n<2, n, If[OddQ[n], 0, Function[t, t*(1-t)/2][b[n/2]]] + Sum[b[i]*b[n-i], {i, 1, n/2}]];
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)
CROSSREFS
Cf. A001190, A003214. Row sums of A088326.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 06 2003
STATUS
approved
Number of n-node rooted unlabeled trees with exactly 3 edges at root and otherwise out-degree <= 2.
+10
3
0, 0, 0, 0, 1, 1, 3, 6, 14, 29, 68, 147, 337, 757, 1734, 3953, 9113, 20988, 48645, 112909, 263084, 614201, 1438001, 3373253, 7930660, 18679005, 44075988, 104173194, 246604137, 584620470, 1387879434, 3299067379, 7851736348, 18708682855, 44627133541, 106563177864
OFFSET
0,7
FORMULA
Let G036656(x) = g.f. for A036656. G.f.: x^3*cycle_index(S3, G036656), where cycle_index(Sk, f) means apply the cycle index for the symmetric group S_k to f(x).
E.g., cycle_index(S2, f) = (1/2!)*(f^2+subs(x=x^2, f), cycle_index(S3, f) = (1/3!)*(f^3+3*subs(x=x^2, f)*f+2*subs(x=x^3, f)).
MAPLE
CI2 := proc(f) (1/2)*(f^2+subs(x=x^2, f)); end; CI3 := proc(f) (1/6)*(f^3+3*subs(x=x^2, f)*f+2*subs(x=x^3, f)); end;
N := 40: G036658 := series(x^3*CI3(G036656), x, N); A036658 := n->coeff(G036658, x, n);
MATHEMATICA
terms = 35;
CI3[f_] := (1/3!)*(f^3 + 3*(f /. x -> x^2)*f + 2*(f /. x -> x^3));
G036656[_] = 0; Do[G036656[x_] = x + (1/2)*(G036656[x]^2 + G036656[x^2]) + O[x]^terms // Normal, terms];
G036658[x_] = x^3*CI3[G036656[x] - x] + O[x]^(terms+5);
Drop[CoefficientList[G036658[x], x], 5] (* Jean-François Alcover, Jan 24 2018, adapted from Maple *)
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
Corrected by N. J. A. Sloane, May 03 2000
STATUS
approved
Number of unlabeled forests of rooted trees with 2n edges and n connected components, in which the outdegree of each node is <= 2 and the symmetric group acts on the components.
+10
2
1, 1, 3, 6, 15, 32, 77, 172, 405, 930, 2180, 5070, 11914, 27929, 65829, 155202, 367053, 868990, 2061723, 4897502, 11652547, 27757960, 66210042, 158103242, 377957299, 904439542, 2166408422, 5193894809, 12463003846, 29929966312, 71933014935, 173009938416
OFFSET
0,3
LINKS
FORMULA
a(n) = A088326(2n,n) = A088326(2n+k,n+k) for k >= 0.
CROSSREFS
Cf. A088326.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jun 11 2018
STATUS
approved

Search completed in 0.006 seconds