[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a088325 -id:a088325
     Sort: relevance | references | number | modified | created      Format: long | short | data
Wedderburn-Etherington numbers: unlabeled binary rooted trees (every node has outdegree 0 or 2) with n endpoints (and 2n-1 nodes in all).
(Formerly M0790 N0298)
+10
127
0, 1, 1, 1, 2, 3, 6, 11, 23, 46, 98, 207, 451, 983, 2179, 4850, 10905, 24631, 56011, 127912, 293547, 676157, 1563372, 3626149, 8436379, 19680277, 46026618, 107890609, 253450711, 596572387, 1406818759, 3323236238, 7862958391, 18632325319, 44214569100
OFFSET
0,5
COMMENTS
Also number of n-node binary rooted trees (every node has outdegree <= 2) where root has degree 0 (only for n=1) or 1.
a(n+1) is the number of rooted trees with n nodes where the outdegree of every node is <= 2, see example. These trees are obtained by removing the root of the trees in the comment above. - Joerg Arndt, Jun 29 2014
Number of interpretations of x^n (or number of ways to insert parentheses) when multiplication is commutative but not associative. E.g., a(4) = 2: x(x*x^2) and x^2*x^2. a(5) = 3: (x*x^2)x^2, x(x*x*x^2) and x(x^2*x^2). [If multiplication is non-commutative then the answer is A000108(n-1). - Jianing Song, Apr 29 2022]
Number of ways to place n stars in a single bound stable hierarchical multiple star system; i.e., taking only the configurations from A003214 where all stars are included in single outer parentheses. - Piet Hut, Nov 07 2003
Number of colorations of Kn (complete graph of order n) with n-1 colors such that no triangle is three-colored. Two edge-colorations C1 and C2 of G are isomorphic iff exists an automorphism f (isomorphism between G an G) such that: f sends same-colored edges of C1 on same-colored edges of C2 and f^(-1) sends same-colored edges of C2 on same-colored edges of C1. - Abraham Gutiérrez, Nov 12 2012
For n>1, a(n) is the number of (not necessarily distinct) unordered pairs of free unlabeled trees having a total of n nodes. See the first entry in formula section. - Geoffrey Critzer, Nov 09 2014
Named after the English mathematician Ivor Etherington (1908-1994) and the Scottish mathematician Joseph Wedderburn (1882-1948). - Amiram Eldar, May 29 2021
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 307.
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 55.
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 295-316.
A. Gutiérrez-Sánchez, Shen-colored tournaments, thesis, UNAM, 2012.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Richard P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.52.
Richard P. Stanley, Catalan Numbers, Cambridge, 2015, p. 133.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..2545 (first 201 terms from T. D. Noe)
R. Arratia, S. Garibaldi, and A. W. Hales, The van den Berg--Kesten--Reimer inequality for infinite spaces, arXiv preprint arXiv:1508.05337 [math.PR], 2015.
Yu Hin (Gary) Au, Fatemeh Bagherzadeh, and Murray R. Bremner, Enumeration and Asymptotic Formulas for Rectangular Partitions of the Hypercube, arXiv:1903.00813 [math.CO], 2019.
F. Bagherzadeh, M. R. Bremner, and S. Madariaga, Jordan trialgebras and post-Jordan algebras, arXiv:1611.01214 [math.RA], 2016.
Nils Berglund and Yvain Bruned, BPHZ renormalisation and vanishing subcriticality limit of the fractional Phi_d^3 model, arXiv:1907.13028 [math.PR], 2019.
Nils Berglund and Christian Kuehn, Model Spaces of Regularity Structures for Space-Fractional SPDEs, Journal of Statistical Physics, Springer Verlag, 2017, 168 (2), pp. 331-368; HAL Id: hal-01432157.
Mayfawny Bergmann, Efficiency of Lossless Compression of a Binary Tree via its Minimal Directed Acyclic Graph Representation. Rose-Hulman Undergraduate Mathematics Journal: Vol. 15: Iss. 2, Article 1 (2014).
Sara Billey, Matjaz Konvalinka, and Frederick A Matsen IV, On the enumeration of tanglegrams and tangled chains, arXiv:1507.04976 [math.CO], 2015.
Sara Billey, Matjaž Konvalinka, and Frederick A. Matsen IV, On trees, tanglegrams, and tangled chains, hal-02173394 [math.CO], 2020.
Nicolas Broutin and Philippe Flajolet, The distribution of height and diameter in random non-plane binary trees, Random Struct. Algorithms 41, No. 2, 215-252 (2012).
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Peter J. Cameron, Some treelike objects, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 150, 155-183. MR0891613 (89a:05009). See p. 155. - N. J. A. Sloane, Apr 18 2014
Lorenzo Cappello and Julia A. Palacios, Sequential importance sampling for multi-resolution Kingman-Tajima coalescent counting, arXiv:1902.05527 [stat.AP], 2019.
Sean Cleary, M. Fischer, R. C. Griffiths, and R. Sainudiin, Some distributions on finite rooted binary trees, UCDMS Research Report NO. UCDMS2015/2, School of Mathematics and Statistics, University of Canterbury, Christchurch, NZ, 2015.
S. J. Cyvin, J. Brunvoll, and B. N. Cyvin, Enumeration of constitutional isomers of polyenes, J. Molec. Struct. (Theochem) 357, no. 3 (1995) 255-261.
N. G. de Bruijn and D. A. Klarner, Multisets of aperiodic cycles, SIAM J. Algebraic Discrete Methods 3 (1982), no. 3, 359-368. MR0666861(84i:05008). See p. 367. - N. J. A. Sloane, Mar 25 2014
Jimmy Devillet and Bruno Teheux, Associative, idempotent, symmetric, and order-preserving operations on chains, arXiv:1805.11936 [math.RA], 2018.
Luc Devroye, Michael R. Doboli, Noah A. Rosenberg, and Stephan Wagner, Tree height and the asymptotic mean of the Colijn-Plazzotta rank of unlabeled binary rooted trees, arXiv:2409.18956 [math.CO], 2024. See p. 21.
Filippo Disanto and Thomas Wiehe, Some combinatorial problems on binary rooted trees occurring in population genetics, arXiv preprint arXiv:1112.1295 [math.CO], 2011-2012.
Michael R. Doboli, Hsien-Kuei Hwang, and Noah A. Rosenberg, Periodic Behavior of the Minimal Colijn-Plazzotta Rank for Trees with a Fixed Number of Leaves, In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 18:1-18:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2024).
I. M. H. Etherington, Non-associate powers and a functional equation, Math. Gaz. 21 (1937), 36-39 and 153.
I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162. [Annotated scanned copy]
I. M. H. Etherington, On non-associative combinations, Proc. Royal Soc. Edinburgh, 59 (Part 2, 1938-39), 153-162.
I. M. H. Etherington, Some problems of non-associative combinations (I), Edinburgh Math. Notes, 32 (1940), pp. i-vi.
A. Erdelyi and I. M. H. Etherington, Some problems of non-associative combinations (II), Edinburgh Math. Notes, 32 (1940), pp. vii-xiv.
V. Fack, S. Lievens and J. Van der Jeugt, On the diameter of the rotation graph of binary coupling trees. Discrete Math. 245 (2002), no. 1-3, 1--18. MR1887046 (2003i:05047).
Steven R. Finch, Otter's Tree Enumeration Constants. [Broken link]
Steven R. Finch, Otter's Tree Enumeration Constants. [Wayback Machine]
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 72
J. N. Franklin and S. W. Golomb, A Function-Theoretic Approach to the Study of Nonlinear Recurring Sequences, Pacific J. Math., Vol. 56, p. 467, 1975.
Ira M. Gessel, Counting tanglegrams with species, arXiv:1509.03867 [math.CO], 2020.
Piet Hut, Home Page
V. P. Johnson, Enumeration Results on Leaf Labeled Trees, Ph. D. Dissertation, Univ. Southern Calif., 2012.
M. Konvalinka and S. Wagner, The shape of random tanglegrams, arXiv preprint arXiv:1512.01168 [math.CO], 2015.
A. Ledda, G. Achaz, T. Wiehe and L. Ferretti, Decomposing the site frequency spectrum: the impact of tree topology on neutrality tests, arXiv preprint arXiv:1510.06748 [q-bio.PE], 2015.
Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, Toric Richardson varieties of Catalan type and Wedderburn-Etherington numbers, arXiv:2105.12274 [math.AG], 2021.
F. Murtagh, Counting dendrograms: a survey, Discrete Applied Mathematics, 7 (1984), 191-199.
C. D. Olds, Problem 4277, Amer. Math. Monthly, 56 (1949), 697-699.
C. D. Olds (Proposer) and H. W. Becker (Discussion), Problem 4277, Amer. Math. Monthly 56 (1949), 697-699. [Annotated scanned copy]
Chloe E. Shiff and Noah A. Rosenberg, Enumeration of rooted binary perfect phylogenies, arXiv:2410.14915 [q-bio.PE], 2024. See pp. 2, 5, 9.
F. Sievers, G. M. Hughes, and D. G. Higgins, Systematic Exploration of Guide-Tree Topology Effects for Small Protein Alignments, BMC Bioinformatics 2014, 15:338 (Mentions A001190).
J. H. M. Wedderburn, The functional equation g(x^2) = 2ax + [g(x)]^2, Ann. Math., 24 (1922-23), 121-140.
Eric Weisstein's World of Mathematics, Weakly Binary Tree.
Eric Weisstein's World of Mathematics, Strongly Binary Tree.
FORMULA
G.f. satisfies A(x) = x + (1/2)*(A(x)^2 + A(x^2)) [de Bruijn and Klarner].
G.f. also satisfies A(x) = 1 - sqrt(1 - 2*x - A(x^2)). - Michael Somos, Sep 06 2003
a(2n-1) = a(1)a(2n-2) + a(2)a(2n-3) + ... + a(n-1)a(n), a(2n) = a(1)a(2n-1) + a(2)a(2n-2) + ... + a(n-1)a(n+1) + a(n)(a(n)+1)/2.
Given g.f. A(x), then B(x) = -1 + A(x) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = (u^2 + v)^2 + 2*(v^2 + w). - Michael Somos, Oct 22 2006
The radius of convergence of the g.f. is A240943 = 1/A086317 ~ 0.4026975... - Jean-François Alcover, Jul 28 2014, after Steven R. Finch.
a(n) ~ A086318 * A086317^(n-1) / n^(3/2). - Vaclav Kotesovec, Apr 19 2016
EXAMPLE
G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 23*x^8 + 46*x^9 + 98*x^10 + ...
From Joerg Arndt, Jun 29 2014: (Start)
The a(6+1) = 11 rooted trees with 6 nodes as described in the comment are:
: level sequence outdegrees (dots for zeros)
: 1: [ 0 1 2 3 4 5 ] [ 1 1 1 1 1 . ]
: O--o--o--o--o--o
:
: 2: [ 0 1 2 3 4 4 ] [ 1 1 1 2 . . ]
: O--o--o--o--o
: .--o
:
: 3: [ 0 1 2 3 4 3 ] [ 1 1 2 1 . . ]
: O--o--o--o--o
: .--o
:
: 4: [ 0 1 2 3 4 2 ] [ 1 2 1 1 . . ]
: O--o--o--o--o
: .--o
:
: 5: [ 0 1 2 3 4 1 ] [ 2 1 1 1 . . ]
: O--o--o--o--o
: .--o
:
: 6: [ 0 1 2 3 3 2 ] [ 1 2 2 . . . ]
: O--o--o--o
: .--o
: .--o
:
: 7: [ 0 1 2 3 3 1 ] [ 2 1 2 . . . ]
: O--o--o--o
: .--o
: .--o
:
: 8: [ 0 1 2 3 2 3 ] [ 1 2 1 . 1 . ]
: O--o--o--o
: .--o--o
:
: 9: [ 0 1 2 3 2 1 ] [ 2 2 1 . . . ]
: O--o--o--o
: .--o
: .--o
:
: 10: [ 0 1 2 3 1 2 ] [ 2 1 1 . 1 . ]
: O--o--o--o
: .--o--o
:
: 11: [ 0 1 2 2 1 2 ] [ 2 2 . . 1 . ]
: O--o--o
: .--o
: .--o--o
:
(End)
MAPLE
A001190 := proc(n) option remember; local s, k; if n<=1 then RETURN(n); elif n <=3 then RETURN(1); else s := 0; if n mod 2 = 0 then s := A001190(n/2)*(A001190(n/2)+1)/2; for k from 1 to n/2-1 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); else for k from 1 to (n-1)/2 do s := s+A001190(k)*A001190(n-k); od; RETURN(s); fi; fi; end;
N := 40: G001190 := add(A001190(n)*x^n, n=0..N);
spec := [S, {S=Union(Z, Prod(Z, Set(S, card=2)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
# alternative Maple program:
a:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(a(n/2)))+add(a(i)*a(n-i), i=1..n/2))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Aug 28 2017
MATHEMATICA
terms = 35; A[_] = 0; Do[A[x_] = x + (1/2)*(A[x]^2 + A[x^2]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Jul 22 2011, updated Jan 10 2018 *)
a[n_?OddQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, (n-1)/2}]; a[n_?EvenQ] := a[n] = Sum[a[k]*a[n-k], {k, 1, n/2-1}] + (1/2)*a[n/2]*(1+a[n/2]); a[0]=0; a[1]=1; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jun 13 2012, after recurrence formula *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Nest[ 1 - Sqrt[1 - 2 x - (# /. x -> x^2)] &, 0, BitLength @ n], {x, 0, n}]]; (* Michael Somos, Apr 25 2013 *)
PROG
(PARI) {a(n) = local(A, m); if( n<0, 0, m=1; A = O(x); while( m<=n, m*=2; A = 1 - sqrt(1 - 2*x - subst(A, x, x^2))); polcoeff(A, n))}; /* Michael Somos, Sep 06 2003 */
(PARI) {a(n) = local(A); if( n<4, n>0, A = vector(n, i, 1); for( i=4, n, A[i] = sum( j=1, (i-1)\2, A[j] * A[i-j]) + if( i%2, 0, A[i/2] * (A[i/2] + 1)/2)); A[n])}; /* Michael Somos, Mar 25 2006 */
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A001190(n):
if n <= 1: return n
m = n//2 + n % 2
return sum(A001190(i+1)*A001190(n-1-i) for i in range(m-1)) + (1 - n % 2)*A001190(m)*(A001190(m)+1)//2 # Chai Wah Wu, Jan 14 2022
CROSSREFS
Column k=2 of A292085 and of A299038.
Column k=1 of A319539 and of A319541.
KEYWORD
easy,core,nonn,nice,eigen
STATUS
approved
Triangle T(n,k) (n>=1, 1<=k<=n) read by rows, giving number of Piet Hut's "coat-hanger" arrangements: unlabeled forests of rooted trees with n edges and k connected components, in which the outdegree of each node is <= 2 and the symmetric group acts on the components.
+10
4
1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 6, 5, 3, 1, 1, 11, 12, 6, 3, 1, 1, 23, 23, 14, 6, 3, 1, 1, 46, 52, 29, 15, 6, 3, 1, 1, 98, 109, 68, 31, 15, 6, 3, 1, 1, 207, 244, 147, 74, 32, 15, 6, 3, 1, 1, 451, 532, 337, 163, 76, 32, 15, 6, 3, 1, 1, 983, 1196, 757, 380, 169, 77, 32, 15, 6, 3, 1, 1
OFFSET
1,4
LINKS
FORMULA
G.f.: exp(sum_{k=1..infinity) z^k*B(x^k)/k ), where B(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 11*x^6 + ... = G001190(x)/x - 1 and G001190 is the g.f. for the Wedderburn-Etherington numbers A001190.
G.f.: Product_{j>=1} 1/(1-y*x^j)^A001190(j+1). - Alois P. Heinz, Sep 11 2017
EXAMPLE
See A088325 for illustration.
Triangle begins
1
1 1
2 1 1
3 3 1 1
6 5 3 1 1
11 12 6 3 1 1
...
MAPLE
g:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(g(n/2)))+add(g(i)*g(n-i), i=1..n/2))
end:
b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j)*binomial(
g(i+1)+j-1, j), j=0..min(n/i, p)))))
end:
T:= (n, k)-> b(n$2, k):
seq(seq(T(n, k), k=1..n), n=1..14); # Alois P. Heinz, Sep 11 2017
MATHEMATICA
g[n_] := g[n] = If[n<2, n, If[OddQ[n], 0, Function[t, t*(1-t)/2][g[n/2]]] + Sum[g[i]*g[n - i], {i, 1, n/2}]];
b[n_, i_, p_] := b[n, i, p] = If[p>n, 0, If[n == 0, 1, If[Min[i, p]<1, 0, Sum[b[n-i*j, i-1, p-j]*Binomial[g[i+1]+j-1, j], {j, 0, Min[n/i, p]}]]]];
T[n_, k_] := b[n, n, k];
Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)
CROSSREFS
First 3 columns are A001190, A036657, A036658.
Row sums are A088325.
T(2n,n) gives A305839.
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Nov 06 2003
EXTENSIONS
More terms from Vladeta Jovovic, Nov 06 2003
STATUS
approved
Number of forests on unlabeled nodes with n edges and no single node trees.
+10
4
1, 1, 2, 4, 8, 16, 34, 71, 154, 341, 768, 1765, 4134, 9838, 23766, 58226, 144353, 361899, 916152, 2339912, 6023447, 15617254, 40752401, 106967331, 282267774, 748500921, 1993727506, 5332497586, 14316894271, 38574473086, 104273776038, 282733466684, 768809041078
OFFSET
0,3
COMMENTS
Each forest counted by a(n) with n>0 has number of nodes from the interval [n+1,2*n] and number of trees in [1,n].
Also limiting sequence of reversed rows of A095133.
Differs from A011782 first at n=6 (32) and from A088325 at n=8 (153).
LINKS
FORMULA
a(n) = A095133(2*n,n).
a(n) = A105821(2*n+1,n+1). - Alois P. Heinz, Jul 10 2013
a(n) = A136605(2*n+1,n). - Alois P. Heinz, Apr 11 2014
a(n) ~ c * d^n / n^(5/2), where d = A051491 = 2.955765285..., c = 3.36695186... . - Vaclav Kotesovec, Sep 10 2014
EXAMPLE
a(0) = 1: ( ), the empty forest with 0 trees and 0 edges.
a(1) = 1: ( o-o ), 1 tree and 1 edge. o
a(2) = 2: ( o-o-o ), ( o-o o-o ). |
a(3) = 4: ( o-o-o-o ), ( o-o-o o-o ), ( o-o o-o o-o ), ( o-o-o ).
MAPLE
with(numtheory):
b:= proc(n) option remember; local d, j; `if`(n<=1, n,
(add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/(n-1))
end:
t:= proc(n) option remember; local k; `if` (n=0, 1, b(n)-
(add(b(k)*b(n-k), k=0..n)-`if`(irem(n, 2)=0, b(n/2), 0))/2)
end:
g:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1,
`if`(min(i, p)<1, 0, add(g(n-i*j, i-1, p-j)*
binomial(t(i)+j-1, j), j=0..min(n/i, p)))))
end:
a:= n-> g(2*n, 2*n, n):
seq(a(n), n=0..40);
MATHEMATICA
nn = 30; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; a[0] = 0;
a[1] = 1; sol =
SolveAlways[
0 == Series[
t[x] - x Product[1/(1 - x^i)^a[i], {i, 1, nn}], {x, 0, nn}], x];
b[x_] := Sum[a[n] x^n /. sol, {n, 0, nn}]; ft =
Drop[Flatten[
CoefficientList[Series[b[x] - (b[x]^2 - b[x^2])/2, {x, 0, nn}],
x]], 1]; Drop[
CoefficientList[
Series[Product[1/(1 - y ^(i - 1))^ft[[i]], {i, 2, nn}], {y, 0, nn}],
y], -1] (* Geoffrey Critzer, Nov 10 2014 *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Aug 27 2012
STATUS
approved

Search completed in 0.011 seconds