OFFSET
0,7
FORMULA
Let G036656(x) = g.f. for A036656. G.f.: x^3*cycle_index(S3, G036656), where cycle_index(Sk, f) means apply the cycle index for the symmetric group S_k to f(x).
E.g., cycle_index(S2, f) = (1/2!)*(f^2+subs(x=x^2, f), cycle_index(S3, f) = (1/3!)*(f^3+3*subs(x=x^2, f)*f+2*subs(x=x^3, f)).
MAPLE
CI2 := proc(f) (1/2)*(f^2+subs(x=x^2, f)); end; CI3 := proc(f) (1/6)*(f^3+3*subs(x=x^2, f)*f+2*subs(x=x^3, f)); end;
N := 40: G036658 := series(x^3*CI3(G036656), x, N); A036658 := n->coeff(G036658, x, n);
MATHEMATICA
terms = 35;
CI3[f_] := (1/3!)*(f^3 + 3*(f /. x -> x^2)*f + 2*(f /. x -> x^3));
G036656[_] = 0; Do[G036656[x_] = x + (1/2)*(G036656[x]^2 + G036656[x^2]) + O[x]^terms // Normal, terms];
G036658[x_] = x^3*CI3[G036656[x] - x] + O[x]^(terms+5);
Drop[CoefficientList[G036658[x], x], 5] (* Jean-François Alcover, Jan 24 2018, adapted from Maple *)
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
Corrected by N. J. A. Sloane, May 03 2000
STATUS
approved