proposed
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
proposed
approved
editing
proposed
Eunjeong Lee, Mikiya Masuda, and Seonjeong Park, <a href="https://arxiv.org/abs/2105.12274">Toric Richardson varieties of Catalan type and Wedderburn-Etherington numbers</a>, arXiv:2105.12274 [math.AG], 2021.
approved
editing
proposed
approved
editing
proposed
b[n_] := b[n] = If[n<2, n, If[OddQ[n], 0, Function[t, t*(1-t)/2][b[n/2]]] + Sum[b[i]*b[n-i], {i, 1, n/2}]];
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d+1], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 11 2018, after Alois P. Heinz *)
approved
editing
editing
approved
G.f.: exp(Sum_{k>=1) } B(x^k)/k), where B(x) = x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 11*x^6 + ... = G001190(x)/x - 1 and G001190 is the g.f. for the Wedderburn-Etherington numbers A001190. - N. J. A. Sloane.
approved
editing
editing
approved
Alois P. Heinz, <a href="/A088325/b088325.txt">Table of n, a(n) for n = 0..2542</a>
b:= proc(n) option remember; `if`(n<2, n, `if`(n::odd, 0,
(t-> t*(1-t)/2)(b(n/2)))+add(b(i)*b(n-i), i=1..n/2))
end:
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*b(d+1),
d=numtheory[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Sep 11 2017