Displaying 1-10 of 41 results found.
Tetranacci numbers A073817 without the leading term 4.
(Formerly M2648 N1055)
+20
18
1, 3, 7, 15, 26, 51, 99, 191, 367, 708, 1365, 2631, 5071, 9775, 18842, 36319, 70007, 134943, 260111, 501380, 966441, 1862875, 3590807, 6921503, 13341626, 25716811, 49570747, 95550687, 184179871, 355018116, 684319421, 1319068095, 2542585503, 4900991135
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: x*(1+2*x+3*x^2+4*x^3)/(1-x-x^2-x^3-x^4).
a(n) = trace of M^n, where M = the 4 X 4 matrix [ 0 1 0 0 / 0 0 1 0 / 0 0 0 1 / 1 1 1 1]. E.g., the trace (sum of diagonal terms) of M^12 = a(12) = 2631 = (108 + 316 + 717 + 1490). - Gary W. Adamson, Feb 22 2004
a(n) = n*Sum_{k=ceiling(n/5)..n} Sum_{i=0..(n-k)/4} (-1)^i*binomial(k,k-i)*binomial(n-i*4-1,k-1))/k), n>0. - Vladimir Kruchinin, Jan 20 2012
MAPLE
A001648:=-(1+2*z+3*z**2+4*z**3)/(-1+z+z**2+z**3+z**4); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Rest@ CoefficientList[ Series[(4 - 3 x - 2 x^2 - x^3)/(1 - x - x^2 - x^3 - x^4), {x, 0, 40}], x] (* Or *)
a[0] = 4; a[1] = 1; a[2] = 3; a[3] = 7; a[4] = 15; a[n_] := 2*a[n - 1] - a[n - 5]; Array[a, 33] (* Robert G. Wilson v *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x*(1+2*x+3*x^2+4*x^3)/(1-x-x^2-x^3-x^4)+x*O(x^n), n))
(Maxima) a(n):=n*sum(sum((-1)^i*binomial(k, k-i)*binomial(n-i*4-1, k-1), i, 0, ((n-k)/4))/k, k, ceiling(n/5), n); /* Vladimir Kruchinin, Jan 20 2012 */
(Magma) I:=[1, 3, 7, 15]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 18 2017
Reflected tetranacci numbers A073817.
+20
9
4, -1, -1, -1, 7, -6, -1, -1, 15, -19, 4, -1, 31, -53, 27, -6, 63, -137, 107, -39, 132, -337, 351, -185, 303, -806, 1039, -721, 791, -1915, 2884, -2481, 2303, -4621, 7683, -7846, 7087, -11545, 19987, -23375, 22020, -30177, 51519, -66737, 67415, -82374, 133215, -184993, 201567, -232163, 348804
COMMENTS
Also a(n) is the trace of A^(-n), where A is the 4 X 4 matrix ((1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)).
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, "Concrete Mathematics", Addison-Wesley, Reading, MA, 1998.
LINKS
A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
FORMULA
a(n) = -a(n-1)-a(n-2)-a(n-3)+a(n-4), a(0)=4, a(1)=-1, a(2)=-1, a(3)=-1.
G.f.: (4+3x+2x^2+x^3)/(1+x+x^2+x^3-x^4).
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. (End)
MATHEMATICA
CoefficientList[Series[(4+3*x+2*x^2+x^3)/(1+x+x^2+x^3-x^4), {x, 0, 1}], x]
PROG
(PARI) polsym(polrecip(1+x+x^2+x^3-x^4), 55) \\ Joerg Arndt, Jan 21 2023
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 16 2002
Period of the Lucas 4-step sequence A073817 mod n.
+20
8
1, 5, 26, 10, 312, 130, 342, 20, 78, 1560, 120, 130, 84, 1710, 312, 40, 4912, 390, 6858, 1560, 4446, 120, 12166, 260, 1560, 420, 234, 1710, 280, 1560, 61568, 80, 1560, 24560, 17784, 390, 1368, 34290, 1092, 1560, 240, 22230, 162800, 120, 312, 60830, 103822
COMMENTS
This sequence is the same as the period of Fibonacci 4-step sequence ( A000078) mod n for n<563 because the discriminant of the characteristic polynomial x^4-x^3-x^2-x-1 is -563. The two sequences differ only at n that are multiples of 563.
FORMULA
Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).
a(2^k) = 5*2^(k-1) for k > 0. If a(p) != a(p^2) for p prime, then a(p^k) = p^(k-1)*a(p) for k > 0 [Waddill, 1992]. - Chai Wah Wu, Feb 25 2022
MATHEMATICA
n=4; Table[p=i; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]
PROG
(Python)
from itertools import count
a = b = (4%n, 1%n, 3%n, 7%n)
s = sum(b) % n
for m in count(1):
b, s = b[1:] + (s, ), (s+s-b[0]) % n
if a == b:
Binomial transform of A073817: a(n)=Sum(Binomial(n,k)* A073817(k),(k=0,..,n)).
+20
5
4, 5, 9, 23, 69, 210, 627, 1846, 5405, 15809, 46254, 135382, 396327, 1160294, 3396892, 9944688, 29113741, 85232259, 249522603, 730492701, 2138562494, 6260774221, 18328804756, 53658712275, 157089206159, 459888386910
FORMULA
a(n)=5a(n-1)-8a(n-2)+6a(n-3)-a(n-4), a(0)=4, a(1)=5, a(2)=9, a(3)=23. G.f.: (4-15*z+16*z^2-6*z^3)/(1-5*z+8*z^2-6*z^3+z^4).
MATHEMATICA
CoefficientList[Series[(4-15*z+16*z^2-6*z^3)/(1-5*z+8*z^2-6*z^3+z^4), {z, 0, 30}], z]
LinearRecurrence[{5, -8, 6, -1}, {4, 5, 9, 23}, 30] (* Harvey P. Dale, Jun 24 2017 *)
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Sep 02 2002
Indices of prime generalized tetranacci numbers, A073817.
+20
5
2, 3, 8, 9, 16, 19, 24, 27, 46, 68, 71, 78, 107, 198, 309, 377, 477, 1057, 1631, 2419, 3974, 4293, 8247, 10513, 10709, 12011, 15042, 30543, 31607, 39664, 47552, 145858
COMMENTS
The sequence of generalized tetranacci numbers is defined as beginning with 1, 3, 7, 15. Subsequent terms are the sum of the previous four terms. Note that the sequence of these generalized tetranacci numbers has many more primes than the tetranacci sequence A000078 (whose prime indices are in A104534).
MATHEMATICA
a={-1, -1, -1, 4}; Do[s=Plus@@a; a=RotateLeft[a]; a[[4]]=s; If[PrimeQ[s], Print[n]], {n, 30000}]
CROSSREFS
Cf. A104576 (indices of prime generalized tribonacci numbers).
Period of the Lucas 4-step sequence A073817 mod prime(n).
+20
3
5, 26, 312, 342, 120, 84, 4912, 6858, 12166, 280, 61568, 1368, 240, 162800, 103822, 303480, 205378, 226980, 100254, 357910, 2664, 998720, 1157520, 9320, 368872, 1030300, 10608, 1225042, 2614040, 13874, 2048382, 4530768, 136, 772880, 3307948
COMMENTS
This sequence is the same as the period of Fibonacci 4-step sequence ( A000078) mod prime(n) except for n=103, which corresponds to the prime 563 because the discriminant of the characteristic polynomial x^4-x^3-x^2-x-1 is -563. We have a(n) < prime(n) for primes 563 and A106280.
MATHEMATICA
n=4; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]
CROSSREFS
Cf. A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1), A106280 (primes p such that x^4-x^3-x^2-x-1 mod p has 4 distinct zeros), A106295.
Binomial transform of generalized tetranacci numbers A073817: a(n)=Sum((-1)^k Binomial(n,k)* A073817(k),(k=0,..,n)).
+20
2
4, 3, 5, 3, 5, 8, 23, 52, 109, 201, 350, 586, 983, 1680, 2952, 5288, 9549, 17207, 30803, 54761, 96910, 171223, 302736, 536225, 951487, 1690208, 3003408, 5335509, 9473756, 16814058, 29833868, 52932503, 93922925, 166678207, 295825369
FORMULA
a(n)=3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4), a(0)=4, a(1)=3, a(2)=5, a(3)=3. G.f.: (4 - 9*z + 4*z^2 + 2*z^3)/(1 - 3*z + 2*z^2 + 2*z^3 - 3*z^4).
MATHEMATICA
CoefficientList[Series[(4-9*z+4*z^2+2*z^3)/(1-3*z+2*z^2+2*z^3-3*z^4), {z, 0, 40}], z]
LinearRecurrence[{3, -2, -2, 3}, {4, 3, 5, 3}, 40] (* Harvey P. Dale, Jul 13 2023 *)
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Sep 03 2002
Primes that do not divide any term of the Lucas 4-step sequence A073817.
+20
2
2789, 3847, 4451, 4751, 5431, 6203, 8317, 9533, 9629, 9907, 10093, 11839, 13903, 13907, 14207, 15823, 16319, 16759, 19543, 20939, 21379, 21859, 25303, 26683, 29483, 30871, 31267, 31699, 32003, 32771, 33967, 34963, 36229, 37061, 39983
COMMENTS
If a prime p divides a term a(k) of this sequence, then k must be less than the period of the sequence mod p. Hence these primes are found by computing A073817(k) mod p for increasing k and stopping when either A073817(k) mod p = 0 or the end of the period is reached. Interestingly, for all of these primes, the period of the sequence A073817(k) mod p appears to be (p-1)/d, where d is a small integer.
MATHEMATICA
n=4; lst={}; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; While[s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; !(a==a0 || s==0)]; If[s>0, AppendTo[lst, p]], {i, 10000}]; lst
CROSSREFS
Cf. A053028 (primes not dividing any Lucas number), A106299 (primes not dividing any Lucas 3-step number), A106301 (primes not dividing any Lucas 5-step number).
Sum of two consecutive squares of Lucas 4-step numbers ( A073817).
+20
1
17, 10, 58, 274, 901, 3277, 12402, 46282, 171170, 635953, 2364489, 8785386, 32637202, 121265666, 450571589, 1674090725, 6220049810, 23110593298, 85867345570, 319039636721, 1185390110881, 4404311472106, 16364198176874
COMMENTS
A106729 is sum of two consecutive squares of Lucas numbers ( A001254), for which L(n)^2 + L(n+1)^2 = 5*{F(n)^2 + F(n+1)^2} = 5* A001519(n). A106789 is sum of two consecutive squares of Lucas 3-step numbers ( A001644). Sum of two consecutive squares of Lucas 4-step numbers can be expressed in terms of tetranacci numbers, but not quite as neatly.
LINKS
Index entries for linear recurrences with constant coefficients, signature (2,4,6,12,-4,-6,0,-2,0,1).
FORMULA
G.f.: (17-24*x-30*x^2+16*x^3-143*x^4-21*x^5+46*x^6-32*x^7+2*x^8+17*x^9)/( (1- 3*x-3*x^2+x^3+x^4)*(1+x+2*x^2+2*x^3-2*x^4+x^5-x^6)). - Colin Barker, Dec 17 2012
EXAMPLE
a(4) = A073817(4)^2 + A073817(5)^2 = 15^2 + 26^2 = 225 + 676 = 901 = 30^2 + 1.
MATHEMATICA
LinearRecurrence[{2, 4, 6, 12, -4, -6, 0, -2, 0, 1}, {17, 10, 58, 274, 901, 3277, 12402, 46282, 171170, 635953}, 40] (* G. C. Greubel, Apr 23 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+17*x^9)/(1-2*x-4*x^2-6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10)) \\ G. C. Greubel, Apr 23 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+17*x^9)/(1-2*x-4*x^2 -6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10) )); // G. C. Greubel, Apr 23 2019
(Sage) ((17-24*x-30*x^2+16*x^3-143*x^4-21*x^5 +46*x^6-32*x^7+2*x^8+ 17*x^9)/(1-2*x-4*x^2-6*x^3-12*x^4+4*x^5+6*x^6+2*x^8 -x^10)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
(GAP) a:=[17, 10, 58, 274, 901, 3277, 12402, 46282, 171170, 635953];; for n in [11..40] do a[n]:=2*a[n-1]+4*a[n-2]+6*a[n-3]+12*a[n-4]-4*a[n-5] -6*a[n-6]-2*a[n-8]+a[n-10]; od; a; # G. C. Greubel, Apr 23 2019
a(n)=Sum((-1)^(i+Floor(n/2))S(2i+e),(i=0,..,Floor(n/2))), where S(n) are generalized Tetranacci numbers ( A073817) and e=(1/2)(1-(-1)^n).
+20
0
4, 1, -1, 6, 16, 20, 35, 79, 156, 288, 552, 1077, 2079, 3994, 7696, 14848, 28623, 55159, 106320, 204952, 395060, 761489, 1467815, 2829318, 5453688, 10512308, 20263123, 39058439, 75287564, 145121432, 279730552, 539197989, 1039337543, 2003387514, 3861653592, 7443576640, 14347955295
COMMENTS
a(n) is the convolution of S(n) with the sequence (1,0,-1,0,1,0,-1,0,....) A056594.
FORMULA
a(n)=a(n-1)+2a(n-3)+2a(n-4)+a(n-5)+a(n-6), a(0)=4, a(1)=1, a(2)=-1, a(3)=6, a(4)=16, a(5)=20. G.f.: (4 - 3*x - 2*x^2 - x^3)/(1 - x - 2*x^3 - 2*x^4 - x^5 - x^6).
MATHEMATICA
CoefficientList[Series[(4 - 3*x - 2*x^2 - x^3)/(1 - x - 2*x^3 - 2*x^4 - x^5 - x^6), {x, 0, 40}], x]
LinearRecurrence[{1, 0, 2, 2, 1, 1}, {4, 1, -1, 6, 16, 20}, 40] (* Harvey P. Dale, Mar 09 2013 *)
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Sep 01 2002
Search completed in 0.026 seconds
|