[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106295
Period of the Lucas 4-step sequence A073817 mod n.
8
1, 5, 26, 10, 312, 130, 342, 20, 78, 1560, 120, 130, 84, 1710, 312, 40, 4912, 390, 6858, 1560, 4446, 120, 12166, 260, 1560, 420, 234, 1710, 280, 1560, 61568, 80, 1560, 24560, 17784, 390, 1368, 34290, 1092, 1560, 240, 22230, 162800, 120, 312, 60830, 103822
OFFSET
1,2
COMMENTS
This sequence is the same as the period of Fibonacci 4-step sequence (A000078) mod n for n<563 because the discriminant of the characteristic polynomial x^4-x^3-x^2-x-1 is -563. The two sequences differ only at n that are multiples of 563.
LINKS
Marcellus E. Waddill, Some Properties of the Tetranacci Sequence Modulo m, The Fibonacci Quarterly, vol. 30, no. 3, 232-238 (1992).
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number
FORMULA
Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).
a(2^k) = 5*2^(k-1) for k > 0. If a(p) != a(p^2) for p prime, then a(p^k) = p^(k-1)*a(p) for k > 0 [Waddill, 1992]. - Chai Wah Wu, Feb 25 2022
MATHEMATICA
n=4; Table[p=i; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]
PROG
(Python)
from itertools import count
def A106295(n):
a = b = (4%n, 1%n, 3%n, 7%n)
s = sum(b) % n
for m in count(1):
b, s = b[1:] + (s, ), (s+s-b[0]) % n
if a == b:
return m # Chai Wah Wu, Feb 22-27 2022
CROSSREFS
Cf. A000078, A073817, A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1).
Sequence in context: A137113 A137115 A060063 * A057688 A259207 A300005
KEYWORD
nonn
AUTHOR
T. D. Noe, May 02 2005
STATUS
approved