[go: up one dir, main page]

login
Search: a001648 -id:a001648
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 2^n*tetranacci(n) or (2^n)*A001648(n).
+20
10
2, 12, 56, 240, 832, 3264, 12672, 48896, 187904, 724992, 2795520, 10776576, 41541632, 160153600, 617414656, 2380201984, 9175957504, 35374497792, 136373075968, 525735034880, 2026773676032, 7813464064000, 30121872326656, 116123550875648, 447670682386432
OFFSET
1,1
FORMULA
a(n) = Trace of matrix [({2,2,2,2},{2,0,0,0},{0,2,0,0},{0,0,2,0})^n].
a(n) = 2^n * Trace of matrix [({1,1,1,1},{1,0,0,0},{0,1,0,0},{0,0,1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 2*a(n-1) + 4*a(n-2) + 8*a(n-3) + 16*a(n-4).
G.f.: -2*x*(32*x^3+12*x^2+4*x+1) / (16*x^4+8*x^3+4*x^2+2*x-1). (End)
EXAMPLE
a(8) = (2^8) * A001648(8) = 256 * 191 = 48896. - Indranil Ghosh, Feb 09 2017
MATHEMATICA
Table[Tr[MatrixPower[2*{{1, 1, 1, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}, x]], {x, 1, 20}]
LinearRecurrence[{2, 4, 8, 16}, {2, 12, 56, 240}, 50] (* G. C. Greubel, Dec 19 2017 *)
PROG
(PARI) x='x+O('x^30); Vec(-2*x*(32*x^3+12*x^2+4*x+1)/(16*x^4 +8*x^3 +4*x^2 +2*x -1)) \\ G. C. Greubel, Dec 19 2017
(Magma) I:=[2, 12, 56, 240]; [n le 4 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3) + 16*Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 19 2017
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Jan 09 2007
EXTENSIONS
More terms from Colin Barker, Sep 02 2013
STATUS
approved
a(n) = 3^n*tetranacci(n) or (2^n)*A001648(n).
+20
3
3, 27, 189, 1215, 6318, 37179, 216513, 1253151, 7223661, 41806692, 241805655, 1398221271, 8084811933, 46753521975, 270362105694, 1563413859999, 9040715391141, 52279683047127, 302316992442837, 1748203962973380, 10109314209860523, 58458991419115875
OFFSET
1,1
FORMULA
a(n) = Trace of matrix [({3,3,3,3},{3,0,0,0},{0,3,0,0},{0,0,3,0})^n].
a(n) = 3^n * Trace of matrix [({1,1,1,1},{1,0,0,0},{0,1,0,0},{0,0,1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 3*a(n-1) + 9*a(n-2) + 27*a(n-3) + 81*a(n-4).
G.f.: -3*x*(108*x^3+27*x^2+6*x+1)/(81*x^4+27*x^3+9*x^2+3*x-1). (End)
MATHEMATICA
Table[Tr[MatrixPower[3*{{1, 1, 1, 1}, {1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}}, x]], {x, 1, 20}]
LinearRecurrence[{3, 9, 27, 81}, {3, 27, 189, 1215}, 50] (* G. C. Greubel, Dec 19 2017 *)
PROG
(PARI) x='x+O('x^30); Vec(-3*x*(108*x^3 +27*x^2 +6*x +1)/(81*x^4 +27*x^3 +9*x^2 +3*x -1)) \\ G. C. Greubel, Dec 19 2017
(Magma) I:=[3, 27, 189, 1215]; [n le 4 select I[n] else 3*Self(n-1) + 9*Self(n-2) + 27*Self(n-3) + 81*Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 19 2017
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Jan 09 2007
EXTENSIONS
More terms from Colin Barker, Sep 02 2013
STATUS
approved
a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=1, a(2)=3.
(Formerly M2625 N1040)
+10
86
3, 1, 3, 7, 11, 21, 39, 71, 131, 241, 443, 815, 1499, 2757, 5071, 9327, 17155, 31553, 58035, 106743, 196331, 361109, 664183, 1221623, 2246915, 4132721, 7601259, 13980895, 25714875, 47297029, 86992799, 160004703, 294294531, 541292033, 995591267, 1831177831
OFFSET
0,1
COMMENTS
For n >= 3, a(n) is the number of cyclic sequences consisting of n zeros and ones that do not contain three consecutive ones provided the positions of the zeros and ones are fixed on a circle. This is proved in Charalambides (1991) and Zhang and Hadjicostas (2015). For example, a(3)=7 because only the sequences 110, 101, 011, 001, 010, 100 and 000 avoid three consecutive ones. (For n=1,2 the statement is still true provided we allow the sequence to wrap around itself on a circle.) - Petros Hadjicostas, Dec 16 2016
For n >= 3, also the number of dominating sets on the n-cycle graph C_n. - Eric W. Weisstein, Mar 30 2017
For n >= 3, also the number of minimal dominating sets and maximal irredundant sets on the n-sun graph. - Eric W. Weisstein, Jul 28 and Aug 17 2017
For n >= 3, also the number of minimal edge covers in the n-web graph. - Eric W. Weisstein, Aug 03 2017
For n >= 1, also the number of ways to tile a bracelet of length n with squares, dominoes, and trominoes. - Ruijia Li and Greg Dresden, Sep 14 2019
If n is prime, then a(n)-1 is a multiple of n ; a counterexample for the converse is given by n = 182. - Robert FERREOL, Apr 03 2024
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 500.
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 1..200 from T. D. Noe)
Kunle Adegoke, Robert Frontczak, and Taras Goy, Binomial Tribonacci Sums, Disc. Math. Lett. (2022) Vol. 8, 30-37.
Kunle Adegoke, Adenike Olatinwo, and Winning Oyekanmi, New Tribonacci Recurrence Relations and Addition Formulas, arXiv:1811.03663 [math.CO], 2018.
Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv:1505.06339 [math.NT], 2015.
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, The Fibonacci Quarterly, 29 (1991), 290-297.
Curtis Cooper, Steven Miller, Peter J. C. Moses, Murat Sahin, and Thotsaporn Thanatipanonda, On Identities Of Ruggles, Horadam, Howard, and Young, Preprint, 2016.
Curtis Cooper, Steven Miller, Peter J. C. Moses, Murat Sahin, and Thotsaporn Thanatipanonda, On identities of Ruggles, Hradam, Howard, and Young, The Fibonacci Quarterly, 55.5 (2017), 42-65.
M. Elia, Derived Sequences, The Tribonacci Recurrence and Cubic Forms, The Fibonacci Quarterly, 39.2 (2001), 107-109.
G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3.
G. Everest, Y. Puri and T. Ward, Integer sequences counting periodic points, arXiv:math/0204173 [math.NT], 2002.
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Robert Frontczak, Sums of Tribonacci and Tribonacci-Lucas Numbers, International Journal of Mathematical Analysis, Vol. 12 (2018), No. 1, pp. 19-24.
Robert Frontczak, Convolutions for Generalized Tribonacci Numbers and Related Results, International Journal of Mathematical Analysis (2018) Vol. 12, Issue 7, 307-324.
Petros Hadjicostas, Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence, Journal of Integer Sequences, 19 (2016), #16.8.2.
A. Ilic, S. Klavzar, and Y. Rho, Generalized Lucas Cubes, Appl. An. Disc. Math. 6 (2012) 82-94, proposition 11 for the sequence starting 1, 2, 4, 7, 11,...
Günter Köhler, Generating functions of Fibonacci-like sequences and decimal expansion of some fractions, The Fibonacci Quarterly 23, no.1, (1985), 29-35 [a(n) is there Lambda_n on p. 35].
Pin-Yen Lin, De Moivre type identities for the Tribonacci numbers, The Fibonacci Quarterly 26, no.2, (1988), 131-134.
Matthew Macauley, Jon McCammond, and Henning S. Mortveit, Dynamics groups of asynchronous cellular automata, Journal of Algebraic Combinatorics, Vol 33, No 1 (2011), pp. 11-35.
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
Andreas N. Philippou and Spiros D. Dafnis, A simple proof of an identity generalizing Fibonacci-Lucas identities, Fibonacci Quarterly (2018) Vol. 56, No. 4, 334-336.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
J. L. Ramírez and V. F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38.
Souvik Roy, Nazim Fatès, and Sukanta Das, Reversibility of Elementary Cellular Automata with fully asynchronous updating: an analysis of the rules with partial recurrence, hal-04456320 [nlin.CG], [cs], 2024. See p. 17.
S. Saito, T. Tanaka, and N. Wakabayashi, Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values, J. Int. Seq. 14 (2011) # 11.2.4, Table 3.
Eric Weisstein's World of Mathematics, Cycle Graph
Eric Weisstein's World of Mathematics, Dominating Set
Eric Weisstein's World of Mathematics, Lucas n-Step Number
Eric Weisstein's World of Mathematics, Maximal Irredundant Set
Eric Weisstein's World of Mathematics, Minimal Edge Cover
Eric Weisstein's World of Mathematics, Sun Graph
Eric Weisstein's World of Mathematics, Tribonacci Number
Eric Weisstein's World of Mathematics, Web Graph
Wikipedia, Companion matrix.
A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
FORMULA
Binet's formula: a(n) = r1^n + r2^n + r3^n, where r1, r2, r3 are the roots of the characteristic polynomial 1 + x + x^2 - x^3, see A058265.
a(n) = A000073(n) + 2*A000073(n-1) + 3*A000073(n-2).
G.f.: (3-2*x-x^2)/(1-x-x^2-x^3). - Miklos Kristof, Jul 29 2002
a(n) = n*Sum_{k=1..n} (Sum_{j=n-3*k..k} binomial(j, n-3*k+2*j)* binomial(k,j))/k), n > 0, a(0)=3. - Vladimir Kruchinin, Feb 24 2011
a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=1, a(2)=3. - Harvey P. Dale, Feb 01 2015
a(n) = A073145(-n). for all n in Z. - Michael Somos, Dec 17 2016
Sum_{k=0..n} k*a(k) = (n*a(n+3) - a(n+2) - (n+1)*a(n+1) + 4)/2. - Yichen Wang, Aug 30 2020
a(n) = Trace(M^n), where M = [0, 0, 1; 1, 0, 1; 0, 1, 1] is the companion matrix to the monic polynomial x^3 - x^2 - x - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Dec 29 2022
EXAMPLE
G.f. = 3 + x + 3*x^2 + 7*x^3 + 11*x^4 + 21*x^5 + 39*x^6 + 71*x^7 + 131*x^8 + ...
MAPLE
A001644:=-(1+2*z+3*z**2)/(z**3+z**2+z-1); # Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 3
A001644 :=proc(n)
option remember;
if n <= 2 then
1+2*modp(n+1, 2)
else
procname(n-1)+procname(n-2)+procname(n-3);
end if;
end proc:
seq(A001644(n), n=0..80) ;
MATHEMATICA
a[x_]:= a[x] = a[x-1] +a[x-2] +a[x-3]; a[0] = 3; a[1] = 1; a[2] = 3; Array[a, 40, 0]
a[n_]:= n*Sum[Sum[Binomial[j, n-3*k+2*j]*Binomial[k, j], {j, n-3*k, k}]/k, {k, n}]; a[0] = 3; Array[a, 40, 0] (* Robert G. Wilson v, Feb 24 2011 *)
LinearRecurrence[{1, 1, 1}, {3, 1, 3}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
Table[RootSum[-1 - # - #^2 + #^3 &, #^n &], {n, 0, 40}] (* Eric W. Weisstein, Mar 30 2017 *)
RootSum[-1 - # - #^2 + #^3 &, #^Range[0, 40] &] (* Eric W. Weisstein, Aug 17 2017 *)
PROG
(PARI) {a(n) = if( n<0, polsym(1 - x - x^2 - x^3, -n)[-n+1], polsym(1 + x + x^2 - x^3, n)[n+1])}; /* Michael Somos, Nov 02 2002 */
(PARI) my(x='x+O('x^40)); Vec((3-2*x-x^2)/(1-x-x^2-x^3)) \\ Altug Alkan, Apr 19 2018
(Haskell)
a001644 n = a001644_list !! n
a001644_list = 3 : 1 : 3 : zipWith3 (((+) .) . (+))
a001644_list (tail a001644_list) (drop 2 a001644_list)
-- Reinhard Zumkeller, Apr 13 2014
(Magma) I:=[3, 1, 3]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+ Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 04 2017
(GAP) a:=[3, 1, 3];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Dec 18 2018
(SageMath) ((3-2*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Mar 22 2019
CROSSREFS
Cf. A000073, A073145, A106293 (Pisano periods), A073728 (partial sums).
Cf. A058265.
KEYWORD
nonn,easy
EXTENSIONS
Edited by Mario Catalani (mario.catalani(AT)unito.it), Jul 17 2002
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
STATUS
approved
Tetranacci numbers with different initial conditions: a(n) = a(n-1) + a(n-2) + a(n-3) + a(n-4) starting with a(0)=4, a(1)=1, a(2)=3, a(3)=7.
+10
42
4, 1, 3, 7, 15, 26, 51, 99, 191, 367, 708, 1365, 2631, 5071, 9775, 18842, 36319, 70007, 134943, 260111, 501380, 966441, 1862875, 3590807, 6921503, 13341626, 25716811, 49570747, 95550687, 184179871, 355018116, 684319421, 1319068095, 2542585503
OFFSET
0,1
COMMENTS
These tetranacci numbers follow the same pattern as Lucas and generalized tribonacci(A001644) numbers: Binet's formula is a(n) = r1^n + r2^n + r3^n + r4^n, with r1, r2, r3, r4 roots of the characteristic polynomial.
For n >= 4, a(n) is the number of cyclic sequences consisting of n zeros and ones that do not contain four consecutive ones provided the positions of the zeros and ones are fixed on a circle. This is proved in Charalambides (1991) and Zhang and Hadjicostas (2015). For example, a(4)=15 because only the sequences 1110, 1101, 1011, 0111, 0011, 0101, 1001, 1010, 0110, 1100, 0001, 0010, 0100, 1000, 0000 avoid four consecutive ones on a circle. (For n=1,2,3 the statement is still true provided we allow the sequence to wrap around itself on a circle. For example, a(2)=3 because only the sequences 00, 01, 10 avoid four consecutive ones when wrapped around on a circle.) - Petros Hadjicostas, Dec 18 2016
LINKS
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, The Fibonacci Quarterly, 29 (1991), 290-297.
Spiros D. Dafnis, Andreas N. Philippou, and Ioannis E. Livieris, An Alternating Sum of Fibonacci and Lucas Numbers of Order k, Mathematics (2020) Vol. 9, 1487.
Petros Hadjicostas, Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence, Journal of Integer Sequences, 19 (2016), #16.8.2.
Tony D. Noe and Jonathan Vos Post, Primes in Fibonacci n-step and Lucas n-step Sequences, J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4
J. L. Ramírez and V. F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38.
Yüksel Soykan, Gaussian Generalized Tetranacci Numbers, arXiv:1902.03936 [math.NT], 2019.
Yüksel Soykan, Tetranacci and Tetranacci-Lucas Quaternions, arXiv:1902.05868 [math.RA], 2019.
Yüksel Soykan, Summation Formulas for Generalized Tetranacci Numbers, Asian Journal of Advanced Research and Reports (2019) Vol. 7, No. 2, Article No. AJARR.52434, 1-12.
Yüksel Soykan, Properties of Generalized (r, s, t, u)-Numbers, Earthline J. of Math. Sci. (2021) Vol. 5, No. 2, 297-327.
Kai Wang, Identities for generalized enneanacci numbers, Generalized Fibonacci Sequences (2020).
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855.
L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
FORMULA
G.f.: (4 - 3*x - 2*x^2 - x^3)/(1 - x - x^2 - x^3 - x^4).
a(n) = 2*a(n-1) - a(n-5), with a(0)=4, a(1)=1, a(2)=3, a(3)=7, a(4)=15. - Vincenzo Librandi, Dec 20 2010
a(n) = A000078(n+2) + 2*A000078(n+1) + 3*A000078(n) + 4*A000078(n-1). - Advika Srivastava, Aug 22 2019
a(n) = 8*a(n-3) - a(n-5) - 2*a(n-6) - 4*a(n-7). - Advika Srivastava, Aug 25 2019
a(n) = Trace(M^n), where M is the 4 X 4 matrix [0, 0, 0, 1; 1, 0, 0, 1; 0, 1, 0, 1; 0, 0, 1, 1], the companion matrix to the monic polynomial x^4 - x^3 - x^2 - x - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Dec 31 2022
MATHEMATICA
a[0]=4; a[1]=1; a[2]=3; a[3]=7; a[4]=15; a[n_]:= 2*a[n-1] -a[n-5]; Array[a, 34, 0]
CoefficientList[Series[(4-3x-2x^2-x^3)/(1-x-x^2-x^3-x^4), {x, 0, 40}], x]
LinearRecurrence[{1, 1, 1, 1}, {4, 1, 3, 7}, 40] (* Harvey P. Dale, Jun 01 2015 *)
PROG
(PARI) Vec((4-3*x-2*x^2-x^3)/(1-x-x^2-x^3-x^4) + O(x^40)) \\ Michel Marcus, Jan 29 2016
(Magma) I:=[4, 1, 3, 7]; [n le 4 select I[n] else Self(n-1) +Self(n-2) +Self(n-3) +Self(n-4): n in [1..40]]; // G. C. Greubel, Feb 19 2019
(Sage) ((4-3*x-2*x^2-x^3)/(1-x-x^2-x^3-x^4)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 19 2019
(GAP) a:=[4, 1, 3, 7];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+a[n-3] +a[n-4]; od; a; # G. C. Greubel, Feb 19 2019
CROSSREFS
Cf. A000078, A001630, A001644, A000032, A106295 (Pisano periods). Two other versions: A001648, A074081.
KEYWORD
nonn,easy
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Aug 12 2002
EXTENSIONS
Typo in definition corrected by Vincenzo Librandi, Dec 20 2010
STATUS
approved
A Fielder sequence: a(n) = a(n-1) + a(n-3) + a(n-4), n >= 4.
(Formerly M3351 N1348)
+10
14
4, 1, 1, 4, 9, 11, 16, 29, 49, 76, 121, 199, 324, 521, 841, 1364, 2209, 3571, 5776, 9349, 15129, 24476, 39601, 64079, 103684, 167761, 271441, 439204, 710649, 1149851, 1860496, 3010349, 4870849, 7881196, 12752041, 20633239, 33385284, 54018521, 87403801
OFFSET
0,1
COMMENTS
For n > 1, a(n) is the number of ways of choosing a subset of vertices of an n-cycle so that every vertex of the n-cycle is adjacent to one of the chosen vertices. (Note that this is not the same as the number of dominating sets of the n-cycle, which is given by A001644.) - Joel B. Lewis, Sep 12 2010
For n >= 3, a(n) is also the number of total dominating sets in the n-cycle graph. - Eric W. Weisstein, Apr 10 2018
For n > 0, a(n) is the number of ways to tile a strip of length n with squares, trominos, and quadrominos where the inital tile (of length 1, 3, or 4) can take on 1, 3, or 4 colors respectively. - Greg Dresden and Yuan Shen, Aug 10 2024
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Fern Gossow, Lyndon-like cyclic sieving and Gauss congruence, arXiv:2410.05678 [math.CO], 2024. See p. 26.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Middle European Math Olympiad 2010, Team Problem 3. Available online at the Art of Problem Solving. - Joel B. Lewis, Sep 12 2010
Eric Weisstein's World of Mathematics, Cycle Graph
Eric Weisstein's World of Mathematics, Total Dominating Set
Wikipedia, Companion matrix.
A. V. Zarelua, On Matrix Analogs of Fermat's Little Theorem, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no.
6, 2006, pp. 840-855.
FORMULA
G.f.: (1-x)*(4+x+x^2)/((1+x^2)*(1-x-x^2)).
a(n) = L(n) + i^n + (-i)^n, a(2n) = L(n)^2, a(2n+1) = L(2n+1) where L() is Lucas sequence A000032.
a(n) = a(n-1) + a(n-3) + a(n-4). - Eric W. Weisstein, Apr 10 2018
a(n) = Trace(M^n), where M = [0, 0, 0, 1; 1, 0, 0, 1; 0, 1, 0, 0; 0, 0, 1, 1] is the companion matrix to the monic polynomial x^4 - x^3 - x - 1. . It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Jan 08 2023
MAPLE
A001638:=-(z+1)*(4*z**2-z+1)/(z**2+z-1)/(z**2+1); # conjectured by Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 4
MATHEMATICA
LinearRecurrence[{1, 0, 1, 1}, {4, 1, 1, 4}, 50] (* T. D. Noe, Aug 09 2012 *)
Table[LucasL[n] + 2 Cos[n Pi/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 10 2018 *)
CoefficientList[Series[(-4 + 3 x + x^3)/(-1 + x + x^3 + x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Apr 10 2018 *)
PROG
(PARI) a(n)=if(n<0, 0, fibonacci(n+1)+fibonacci(n-1)+simplify(I^n+(-I)^n))
(PARI) a(n)=if(n<0, 0, polsym((1+x-x^2)*(1+x^2), n)[n+1])
(Magma) I:=[4, 1, 1, 4]; [n le 4 select I[n] else Self(n-1) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
KEYWORD
nonn,easy
EXTENSIONS
Edited by Michael Somos, Feb 17 2002 and Nov 02 2002
STATUS
approved
Array L(k,n) read by antidiagonals: k-step Lucas numbers.
+10
7
1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 1, 3, 7, 7, 1, 1, 3, 7, 11, 11, 1, 1, 3, 7, 15, 21, 18, 1, 1, 3, 7, 15, 26, 39, 29, 1, 1, 3, 7, 15, 31, 51, 71, 47, 1, 1, 3, 7, 15, 31, 57, 99, 131, 76, 1, 1, 3, 7, 15, 31, 63, 113, 191, 241, 123, 1
OFFSET
1,5
LINKS
C. A. Charalambides, Lucas numbers and polynomials of order k and the length of the longest circular success run, The Fibonacci Quarterly, 29 (1991), 290-297.
Eric Weisstein's World of Mathematics, Lucas n-Step Number
FORMULA
L(k,n) = L(k,n-1) + L(k,n-2) + ... + L(k,n-k); L(k,n) = -1 for n < 0, and L(k,0) = k.
G.f. for row k: x*(dB(k,x)/dx)/(1-B(k,x)), where B(k,x) = x + x^2 + ... + x^k. - Petros Hadjicostas, Jan 24 2019
EXAMPLE
Table begins:
1 | 1 1 1 1 1 1 1 1 1 1
2 | 1 3 4 7 11 18 29 47 76 123
3 | 1 3 7 11 21 39 71 131 241 443
4 | 1 3 7 15 26 51 99 191 367 708
5 | 1 3 7 15 31 57 113 223 439 863
6 | 1 3 7 15 31 63 120 239 475 943
7 | 1 3 7 15 31 63 127 247 493 983
8 | 1 3 7 15 31 63 127 255 502 1003
9 | 1 3 7 15 31 63 127 255 511 1013
PROG
(Sage)
def L(k, n):
if n < 0:
return -1
a = [-1]*(k-1) + [k] # [-1, -1, ..., -1, k]
for i in range(1, n+1):
a[:] = a[1:] + [sum(a)]
return a[-1]
[L(k, n) for d in (1..12) for k, n in zip((d..1, step=-1), (1..d))] # Freddy Barrera, Jan 10 2019
CROSSREFS
n-step Lucas number analog of A092921 Array F(k, n) read by antidiagonals: k-generalized Fibonacci numbers (and see related A048887, A048888). L(1, n) = "1-step Lucas numbers" = A000012. L(2, n) = 2-step Lucas numbers = A000204. L(3, n) = 3-step Lucas numbers = A001644. L(4, n) = 4-step Lucas numbers = A001648 Tetranacci numbers A073817 without the leading term 4. L(5, n) = 5-step Lucas numbers = A074048 Pentanacci numbers with initial conditions a(0)=5, a(1)=1, a(2)=3, a(3)=7, a(4)=15. L(6, n) = 6-step Lucas numbers = A074584 Esanacci ("6-anacci") numbers. L(7, n) = 7-step Lucas numbers = A104621 Heptanacci-Lucas numbers. L(8, n) = 8-step Lucas numbers = A105754. L(9, n) = 9-step Lucas numbers = A105755. See A000295, A125129 for comments on partial sums of diagonals.
KEYWORD
easy,nonn,tabl
AUTHOR
Jonathan Vos Post, Nov 21 2006
EXTENSIONS
Corrected by Freddy Barrera, Jan 10 2019
STATUS
approved
4-step Fibonacci sequence starting with 1,0,1,0.
+10
6
1, 0, 1, 0, 2, 3, 6, 11, 22, 42, 81, 156, 301, 580, 1118, 2155, 4154, 8007, 15434, 29750, 57345, 110536, 213065, 410696, 791642, 1525939, 2941342, 5669619, 10928542, 21065442, 40604945, 78268548, 150867477, 290806412, 560547382, 1080489819
OFFSET
0,5
FORMULA
a(n+4) = a(n)+a(n+1)+a(n+2)+a(n+3).
MATHEMATICA
LinearRecurrence[Table[1, {4}], {1, 0, 1, 0}, 36] (* Michael De Vlieger, Dec 09 2014 *)
PROG
(J) NB. see A251655 for the program and apply it to 1, 0, 1, 0.
CROSSREFS
Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251654, A251655, A251703, A251704, A251705.
Cf. A000336.
KEYWORD
nonn
AUTHOR
Arie Bos, Dec 06 2014
STATUS
approved
4-step Fibonacci sequence starting with 1,1,0,0.
+10
6
1, 1, 0, 0, 2, 3, 5, 10, 20, 38, 73, 141, 272, 524, 1010, 1947, 3753, 7234, 13944, 26878, 51809, 99865, 192496, 371048, 715218, 1378627, 2657389, 5122282, 9873516, 19031814, 36685001, 70712613, 136302944, 262732372, 506432930, 976180859
OFFSET
0,5
FORMULA
a(n+4) = a(n) + a(n+1) + a(n+2) + a(n+3).
MATHEMATICA
LinearRecurrence[Table[1, {4}], {1, 1, 0, 0}, 36] (* Michael De Vlieger, Dec 09 2014 *)
PROG
(J) NB. see A251655 for the program and apply it to 1, 1, 0, 0.
CROSSREFS
Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251654, A251655, A251656, A251704, A251705.
KEYWORD
nonn,easy
AUTHOR
Arie Bos, Dec 07 2014
STATUS
approved
4-step Fibonacci sequence starting with 0, 1, 1, 0.
+10
5
0, 1, 1, 0, 2, 4, 7, 13, 26, 50, 96, 185, 357, 688, 1326, 2556, 4927, 9497, 18306, 35286, 68016, 131105, 252713, 487120, 938954, 1809892, 3488679, 6724645, 12962170, 24985386, 48160880, 92833081, 178941517, 344920864, 664856342, 1281551804
OFFSET
0,5
FORMULA
a(n+4) = a(n) + a(n+1) + a(n+2) + a(n+3).
MATHEMATICA
LinearRecurrence[Table[1, {4}], {0, 1, 1, 0}, 36] (* Michael De Vlieger, Dec 09 2014 *)
PROG
(J) NB. see A251655 for the program and apply it to 0, 1, 1, 0.
CROSSREFS
Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251655, A251656, A251672, A251703, A251704, A251705.
KEYWORD
nonn,easy
AUTHOR
Arie Bos, Dec 06 2014
STATUS
approved
4-step Fibonacci sequence starting with 0, 1, 1, 1.
+10
5
0, 1, 1, 1, 3, 6, 11, 21, 41, 79, 152, 293, 565, 1089, 2099, 4046, 7799, 15033, 28977, 55855, 107664, 207529, 400025, 771073, 1486291, 2864918, 5522307, 10644589, 20518105, 39549919, 76234920, 146947533, 283250477, 545982849, 1052415779, 2028596638
OFFSET
0,5
FORMULA
a(n+4) = a(n) + a(n+1) + a(n+2) + a(n+3).
MATHEMATICA
LinearRecurrence[Table[1, {4}], {0, 1, 1, 1}, 36] (* Michael De Vlieger, Dec 09 2014 *)
PROG
(J) (see www.jsoftware.com) First construct the generating matrix
[M=: (#.@}: + {:)\"1&.|: <:/~i.4
1 1 1 1
1 2 2 2
2 3 4 4
4 6 7 8
Given that matrix, one can produce the first 4*250 numbers with
, M(+/ . *)^:(i.250) 0 1 1 1x
CROSSREFS
Other 4-step Fibonacci sequences are A000078, A000288, A001630, A001631, A001648, A073817, A100532, A251654, A251656, A251672, A251703, A251704, A251705.
KEYWORD
nonn,easy
AUTHOR
Arie Bos, Dec 06 2014
STATUS
approved

Search completed in 0.021 seconds