[go: up one dir, main page]

login
A001648
Tetranacci numbers A073817 without the leading term 4.
(Formerly M2648 N1055)
18
1, 3, 7, 15, 26, 51, 99, 191, 367, 708, 1365, 2631, 5071, 9775, 18842, 36319, 70007, 134943, 260111, 501380, 966441, 1862875, 3590807, 6921503, 13341626, 25716811, 49570747, 95550687, 184179871, 355018116, 684319421, 1319068095, 2542585503, 4900991135
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 1..3501 (terms 1..200 from T. D. Noe)
Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly 6, 1968, 64-70.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
S. Saito, T. Tanaka, N. Wakabayashi, Combinatorial Remarks on the Cyclic Sum Formula for Multiple Zeta Values , J. Int. Seq. 14 (2011) # 11.2.4, Table 3.
Eric Weisstein's World of Mathematics, Lucas n-Step Number
FORMULA
G.f.: x*(1+2*x+3*x^2+4*x^3)/(1-x-x^2-x^3-x^4).
a(n) = trace of M^n, where M = the 4 X 4 matrix [ 0 1 0 0 / 0 0 1 0 / 0 0 0 1 / 1 1 1 1]. E.g., the trace (sum of diagonal terms) of M^12 = a(12) = 2631 = (108 + 316 + 717 + 1490). - Gary W. Adamson, Feb 22 2004
a(n) = n*Sum_{k=ceiling(n/5)..n} Sum_{i=0..(n-k)/4} (-1)^i*binomial(k,k-i)*binomial(n-i*4-1,k-1))/k), n>0. - Vladimir Kruchinin, Jan 20 2012
MAPLE
A001648:=-(1+2*z+3*z**2+4*z**3)/(-1+z+z**2+z**3+z**4); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Rest@ CoefficientList[ Series[(4 - 3 x - 2 x^2 - x^3)/(1 - x - x^2 - x^3 - x^4), {x, 0, 40}], x] (* Or *)
a[0] = 4; a[1] = 1; a[2] = 3; a[3] = 7; a[4] = 15; a[n_] := 2*a[n - 1] - a[n - 5]; Array[a, 33] (* Robert G. Wilson v *)
LinearRecurrence[{1, 1, 1, 1}, {1, 3, 7, 15}, 60] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(x*(1+2*x+3*x^2+4*x^3)/(1-x-x^2-x^3-x^4)+x*O(x^n), n))
(Maxima) a(n):=n*sum(sum((-1)^i*binomial(k, k-i)*binomial(n-i*4-1, k-1), i, 0, ((n-k)/4))/k, k, ceiling(n/5), n); /* Vladimir Kruchinin, Jan 20 2012 */
(Magma) I:=[1, 3, 7, 15]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-4): n in [1..30]]; // G. C. Greubel, Dec 18 2017
CROSSREFS
Sequence in context: A078869 A011890 A131076 * A051054 A001649 A303220
KEYWORD
nonn,easy
STATUS
approved