[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a078392 -id:a078392
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = Sum_{d|n} p(d), where p(d) = A000041 = number of partitions of d.
+10
57
1, 3, 4, 8, 8, 17, 16, 30, 34, 52, 57, 99, 102, 153, 187, 261, 298, 432, 491, 684, 811, 1061, 1256, 1696, 1966, 2540, 3044, 3876, 4566, 5846, 6843, 8610, 10203, 12610, 14906, 18491, 21638, 26508, 31290, 38044, 44584, 54133, 63262, 76241
OFFSET
1,2
COMMENTS
Inverse Moebius transform of A000041.
Row sums of triangle A137587. - Gary W. Adamson, Jan 27 2008
Row sums of triangle A168021. - Omar E. Pol, Nov 20 2009
Row sums of triangle A168017. Row sums of triangle A168018. - Omar E. Pol, Nov 25 2009
Sum of the partition numbers of the divisors of n. - Omar E. Pol, Feb 25 2014
Conjecture: for n > 6, a(n) is strictly increasing. - Franklin T. Adams-Watters, Apr 19 2014
Number of constant multiset partitions of multisets spanning an initial interval of positive integers with multiplicities an integer partition of n. - Gus Wiseman, Sep 16 2018
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: Sum_{k>0} (-1+1/Product_{i>0} (1-z^(k*i))). - Vladeta Jovovic, Jun 22 2003
G.f.: sum(n>0,A000041(n)*x^n/(1-x^n)). - Mircea Merca, Feb 24 2014.
a(n) = A168111(n) + A000041(n). - Omar E. Pol, Feb 26 2014
a(n) = Sum_{y is a partition of n} A000005(GCD(y)). - Gus Wiseman, Sep 16 2018
EXAMPLE
For n = 10 the divisors of 10 are 1, 2, 5, 10, hence the partition numbers of the divisors of 10 are 1, 2, 7, 42, so a(10) = 1 + 2 + 7 + 42 = 52. - Omar E. Pol, Feb 26 2014
From Gus Wiseman, Sep 16 2018: (Start)
The a(6) = 17 constant multiset partitions:
(111111) (111)(111) (11)(11)(11) (1)(1)(1)(1)(1)(1)
(111222) (12)(12)(12)
(111122) (112)(112)
(112233) (123)(123)
(111112)
(111123)
(111223)
(111234)
(112234)
(112345)
(123456)
(End)
MAPLE
with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l) do c := c+numbpart(l[i]) od: RETURN(c): end: for j from 1 to 60 do printf(`%d, `, a(j)) od: # Zerinvary Lajos, Apr 14 2007
MATHEMATICA
a[n_] := Sum[ PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 44}] (* Jean-François Alcover, Oct 03 2013 *)
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved
a(n) = Sum_{ k, k|n } 2^(k-1).
+10
44
1, 3, 5, 11, 17, 39, 65, 139, 261, 531, 1025, 2095, 4097, 8259, 16405, 32907, 65537, 131367, 262145, 524827, 1048645, 2098179, 4194305, 8390831, 16777233, 33558531, 67109125, 134225995, 268435457, 536887863, 1073741825, 2147516555, 4294968325, 8590000131
OFFSET
1,2
COMMENTS
Dirichlet convolution of b_n=1 with c_n = 2^(n-1).
Equals row sums of triangle A143425, & inverse Möbius transform (A051731) of [1, 2, 4, 8, ...]. - Gary W. Adamson, Aug 14 2008
Number of constant multiset partitions of normal multisets of size n, where a multiset is normal if it spans an initial interval of positive integers. - Gus Wiseman, Sep 16 2018
FORMULA
G.f.: Sum_{n>0} x^n/(1-2*x^n). - Vladeta Jovovic, Nov 14 2002
a(n) = 1/2 * A055895(n). - Joerg Arndt, Aug 14 2012
G.f.: Sum_{n>=1} 2^(n-1) * x^n / (1 - x^n). - Paul D. Hanna, Aug 21 2014
G.f.: Sum_{n>=1} x^n * Sum_{d|n} 1/(1 - x^d)^(n/d). - Paul D. Hanna, Aug 21 2014
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Sep 09 2014
a(n) = Sum_{k in row n of A215366} A008480(k) * A000005(A289508(k)). - Gus Wiseman, Sep 16 2018
a(n) = Sum_{c is a composition of n} A000005(gcd(c)). - Gus Wiseman, Sep 16 2018
EXAMPLE
From Gus Wiseman, Sep 16 2018: (Start)
The a(4) = 11 constant multiset partitions:
(1)(1)(1)(1)
(11)(11)
(12)(12)
(1111)
(1222)
(1122)
(1112)
(1233)
(1223)
(1123)
(1234)
(End)
MAPLE
seq(add(2^(k-1), k=numtheory:-divisors(n)), n = 1 .. 100); # Robert Israel, Aug 22 2014
MATHEMATICA
Rest[CoefficientList[Series[Sum[x^k/(1-2*x^k), {k, 1, 30}], {x, 0, 30}], x]] (* Vaclav Kotesovec, Sep 08 2014 *)
PROG
(PARI) A034729(n) = sumdiv(n, k, 2^(k-1)) \\ Michael B. Porter, Mar 11 2010
(PARI) {a(n)=polcoeff(sum(m=1, n, 2^(m-1)*x^m/(1-x^m +x*O(x^n))), n)}
for(n=1, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 21 2014
(PARI) {a(n)=local(A=x+x^2); A=sum(m=1, n, x^m*sumdiv(m, d, 1/(1 - x^(m/d) +x*O(x^n))^d) ); polcoeff(A, n)}
for(n=1, 40, print1(a(n), ", ")) \\ Paul D. Hanna, Aug 21 2014
(Python)
from sympy import divisors
def A034729(n): return sum(1<<(d-1) for d in divisors(n, generator=True)) # Chai Wah Wu, Jul 15 2022
(Magma)
A034729:= func< n | (&+[2^(d-1): d in Divisors(n)]) >;
[A034729(n): n in [1..40]]; // G. C. Greubel, Jun 26 2024
(SageMath)
def A034729(n): return sum(2^(k-1) for k in (1..n) if (k).divides(n))
[A034729(n) for n in range(1, 41)] # G. C. Greubel, Jun 26 2024
CROSSREFS
Cf. A289508.
Sums of the form Sum_{d|n} q^(d-1): this sequence (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), A339688 (q=8), A339689 (q=9).
KEYWORD
nonn
STATUS
approved
Dirichlet convolution of b_n = 2^(n-1) with phi(n).
+10
19
1, 3, 6, 12, 20, 42, 70, 144, 270, 540, 1034, 2112, 4108, 8274, 16440, 32928, 65552, 131418, 262162, 524880, 1048740, 2098206, 4194326, 8391024, 16777300, 33558564, 67109418, 134226120, 268435484, 536888520, 1073741854, 2147516736
OFFSET
1,2
COMMENTS
Sum of GCD's of parts in all compositions of n. - Vladeta Jovovic, Aug 13 2003
From Petros Hadjicostas, Dec 07 2017: (Start)
It also equals the sum of all lengths of all cyclic compositions of n. This was proved in Perez (2008).
The bivariate g.f. for the number b(n,k) of all cyclic of compositions of n with k parts is Sum_{n,k>=1} b(n,k)*x^n*y^k = -Sum_{s>=1} (phi(s)/s)*log(1 - y^s*Sum_{t>=1} x^{s*t}) = -Sum_{s>=1} (phi(s)/s)*log(1 - y^s*x^s/(1-x^s)). See, for example, Hadjicostas (2016). Differentiating w.r.t. y and setting y = 1, we get Sum_{n>=1} a(n)*x^n = Sum_{n>=1} (Sum_{k=1..n} b(n,k)*k)*x^n = Sum_{s>=1} phi(s)*x^s/(1-2*x^s).
(End)
LINKS
P. Hadjicostas, Cyclic compositions of a positive integer with parts avoiding an arithmetic sequence, J. Integer Sequences 19 (2016), Article 16.8.2.
R. A. Perez, Compositions versus cyclic compositions, JP Journal of Algebra, Number Theory and Applications, Vol. 12, Issue 1 (2008), pp. 41-48.
Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See pp. 47-48, 50.
FORMULA
a(n) = A053635(n)/2.
a(n) = (1/2)* Sum_{d|n} phi(d)*2^(n/d), n >= 1.
G.f.: Sum_{s>=1} phi(s)*x^s/(1-2*x^s). - Petros Hadjicostas, Dec 07 2017
a(n) ~ 2^(n-1). - Vaclav Kotesovec, Feb 07 2019
a(n) = Sum_{k=1..n} 2^(gcd(k, n) - 1). - Seiichi Manyama, Apr 17 2021
a(n) = Sum_{k=1..n} 2^(n/gcd(n,k) - 1)*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 06 2021
EXAMPLE
For the compositions of n=4 we have a(4) = gcd(4) + gcd(1,3) + gcd(3,1) + gcd(2,2) + gcd(2,1,1) + gcd(1,2,1) + gcd(1,1,2) + gcd(1,1,1,1) = 4 + 1 + 1 + 2 + 1 + 1 + 1 + 1 = 12. Also, for cyclic compositions of n=4, we have length(4) + length(1,3) + length(2,2) + length(1,1,2) + length(1,1,1,1) = 1 + 2 + 2 + 3 + 4 = 12.
MATHEMATICA
Table[Sum[EulerPhi[d]*2^(n/d-1), {d, Divisors[n]}], {n, 1, 40}] (* Vaclav Kotesovec, Feb 07 2019 *)
PROG
(PARI) a(n) = sum(k=1, n, 2^(gcd(k, n)-1)); \\ Seiichi Manyama, Apr 17 2021
(PARI) a(n) = sumdiv(n, d, eulerphi(n/d)*2^(d-1)); \\ Seiichi Manyama, Apr 17 2021
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, eulerphi(k)*x^k/(1-2*x^k))) \\ Seiichi Manyama, Apr 17 2021
CROSSREFS
KEYWORD
nonn
STATUS
approved
Sum over all partitions of n of the LCM of the parts.
+10
9
1, 1, 3, 6, 12, 23, 38, 73, 118, 198, 318, 530, 819, 1298, 1974, 2975, 4516, 6698, 9980, 14550, 21186, 30304, 43503, 62030, 87908, 123292, 172543, 239720, 331688, 458198, 629376, 860332, 1168172, 1583176, 2138438, 2876283, 3859770, 5159886, 6863702, 9112356
OFFSET
0,3
COMMENTS
Old name was: Row sums of A181842.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..188 (terms n=1..80 from Vincenzo Librandi)
FORMULA
a(n) = Sum_{k>=0} k * A256067(n,k) = Sum_{k>=0} A256553(n,k)*A256554(n,k). - Alois P. Heinz, Apr 02 2015
MAPLE
with(combstruct):
a181844 := proc(n) local k, L, l, R, part;
R := NULL; L := 0;
for k from 1 to n do
part := iterstructs(Partition(n), size=k):
while not finished(part) do
l := nextstruct(part);
L := L + ilcm(op(l));
od;
od;
L end:
# second Maple program:
b:= proc(n, i, r) option remember; `if`(n=0, r, `if`(i<1, 0,
b(n, i-1, r)+b(n-i, min(i, n-i), ilcm(i, r))))
end:
a:= n-> b(n$2, 1):
seq(a(n), n=0..42); # Alois P. Heinz, Mar 18 2019
MATHEMATICA
t[n_, k_] := LCM @@@ IntegerPartitions[n, {n - k + 1}] // Total; a[n_] := Sum[t[n, k], {k, 1, n}]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Jul 26 2013 *)
CROSSREFS
Cf. A078392 (the same for GCD), A181843, A181842, A256067, A256553, A256554, A306956.
KEYWORD
nonn
AUTHOR
Peter Luschny, Dec 07 2010
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Mar 29 2015
New name from Alois P. Heinz, Mar 18 2019
STATUS
approved
T(n, k) = Sum_{d|n} phi(d) * A008284(n/d, k) for n >= 1, T(0, 0) = 1. Triangle read by rows for 0 <= k <= n.
+10
9
1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 4, 3, 1, 1, 0, 5, 2, 2, 1, 1, 0, 6, 6, 4, 2, 1, 1, 0, 7, 3, 4, 3, 2, 1, 1, 0, 8, 8, 6, 6, 3, 2, 1, 1, 0, 9, 6, 9, 6, 5, 3, 2, 1, 1, 0, 10, 11, 10, 10, 8, 5, 3, 2, 1, 1, 0, 11, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 12, 17, 19, 19, 14, 12, 7, 5, 3, 2, 1, 1
OFFSET
0,5
COMMENTS
Dirichlet convolution of phi(n) and A008284(n,k) for n >= 1. - Richard L. Ollerton, May 07 2021
LINKS
FORMULA
From Richard L. Ollerton, May 07 2021: (Start)
For n >= 1, T(n,k) = Sum_{i=1..n} A008284(gcd(n,i),k).
For n >= 1, T(n,k) = Sum_{i=1..n} A008284(n/gcd(n,i),k)*phi(gcd(n,i))/phi(n/gcd(n,i)). (End)
EXAMPLE
Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 2, 1]
[3] [0, 3, 1, 1]
[4] [0, 4, 3, 1, 1]
[5] [0, 5, 2, 2, 1, 1]
[6] [0, 6, 6, 4, 2, 1, 1]
[7] [0, 7, 3, 4, 3, 2, 1, 1]
[8] [0, 8, 8, 6, 6, 3, 2, 1, 1]
[9] [0, 9, 6, 9, 6, 5, 3, 2, 1, 1]
PROG
(SageMath)
def DivisorTriangle(f, T, Len, w = None):
D = [[1]]
for n in (1..Len-1):
r = lambda k: [f(d)*T(n//d, k) for d in divisors(n)]
L = [sum(r(k)) for k in (0..n)]
if w != None: L = [*map(lambda v: v * w(n), L)]
D.append(L)
return D
DivisorTriangle(euler_phi, A008284, 10)
CROSSREFS
Cf. A008284, A000010, A078392 (row sums), A282750.
Cf. A000041 (where reversed rows converge to).
T(2n,n) gives A052810.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 24 2019
STATUS
approved
Sum of GCDs of strict integer partitions of n.
+10
4
1, 2, 4, 5, 7, 10, 11, 14, 18, 21, 22, 33, 30, 39, 49, 54, 54, 78, 72, 100, 110, 121, 126, 181, 174, 207, 238, 284, 284, 389, 370, 466, 512, 582, 647, 806, 796, 954, 1066, 1265, 1300, 1616, 1652, 1979, 2192, 2452, 2636, 3202, 3336, 3892, 4237, 4843, 5172, 6090
OFFSET
1,2
FORMULA
From Richard L. Ollerton, May 06 2021: (Start)
a(n) = Sum_{d|n} A000010(n/d)*A000009(d).
a(n) = Sum_{k=1..n} A000009(gcd(n,k)).
a(n) = Sum_{k=1..n} A000009(n/gcd(n,k))*A000010(gcd(n,k))/A000010(n/gcd(n,k)). (End)
MAPLE
b:= proc(n, i, r) option remember; `if`(i*(i+1)/2<n, 0,
(t-> `if`(i<n, b(n-i, min(i-1, n-i), t), 0)
+`if`(i=n, t, 0)+b(n, i-1, r))(igcd(i, r)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=1..61); # Alois P. Heinz, Mar 17 2019
MATHEMATICA
Table[Sum[GCD@@ptn, {ptn, Select[IntegerPartitions[n], UnsameQ@@#&]}], {n, 30}]
(* Second program: *)
b[n_, i_, r_] := b[n, i, r] = If[i(i+1)/2 < n, 0,
With[{t = GCD[i, r]}, If[i < n, b[n - i, Min[i - 1, n - i], t], 0] +
If[i == n, t, 0] + b[n, i - 1, r]]];
a[n_] := b[n, n, 0];
Array[a, 61] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 16 2018
STATUS
approved
a(n) = Sum_{d|n} phi(d)*Bell(n/d) for n>0, a(0) = 0.
+10
3
0, 1, 3, 7, 19, 56, 214, 883, 4163, 21163, 116039, 678580, 4213848, 27644449, 190900217, 1382958677, 10480146333, 82864869820, 682076827740, 5832742205075, 51724158351527, 474869816158547, 4506715739125923, 44152005855084368, 445958869299027638
OFFSET
0,3
COMMENTS
Dirichlet convolution of phi(n) (A000010) and the Bell numbers (A000110) (n >= 1). - Richard L. Ollerton, May 09 2021
LINKS
FORMULA
a(n) = Sum_{k=0..n} A258170(n,k).
For n >= 1, a(n) = Sum_{k=1..n} Bell(gcd(n,k)). - Richard L. Ollerton, May 09 2021
MAPLE
with(numtheory):
A:= proc(n, k) option remember;
add(phi(d)*k^(n/d), d=divisors(n))
end:
T:= (n, k)-> add((-1)^(k-i)*binomial(k, i)*A(n, i), i=0..k)/k!:
a:= n-> add(T(n, k), k=0..n):
seq(a(n), n=0..30);
MATHEMATICA
a[n_] := If[n == 0, 0, DivisorSum[n, EulerPhi[#] BellB[n/#] &]];
Table[a[n], {n, 0, 25}] (* Peter Luschny, Aug 27 2019 *)
CROSSREFS
Row sums of A258170.
Similar: A078392 (numbpart), this sequence (bell), A053635 (numbcomb), A181847 and A034738 (numbcomp), A327030 (numbperm).
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 22 2015
EXTENSIONS
New name from Peter Luschny, Aug 27 2019
STATUS
approved
Triangle read by rows, A168532 * A000012; as infinite lower triangular matrices.
+10
2
1, 2, 1, 3, 1, 1, 5, 2, 1, 1, 7, 1, 1, 1, 1, 11, 4, 2, 1, 1, 1, 15, 1, 1, 1, 1, 1, 1, 22, 5, 2, 2, 1, 1, 1, 1, 30, 3, 3, 1, 1, 1, 1, 1, 1, 42, 8, 2, 2, 2, 1, 1, 1, 1, 1, 56, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 77, 14, 7, 4, 2, 2, 1, 1, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
Row sums = A078392: (1, 3, 5, 9, 11, 20, 21,...).
Triangle A168533 = A000012 * A168532
Left border = the partition numbers, A000041 starting with offset 1.
FORMULA
Triangle read by rows, A168532 * A000012; where A000012 = an infinite lower
triangular matrix with all 1's. The operation takes partial row sums
starting from the right of each row.
EXAMPLE
First few rows of the triangle =
1;
2, 1;
3, 1, 1;
5, 2, 1, 1;
7, 1, 1, 1, 1;
11, 4, 2, 1, 1, 1;
15, 1, 1, 1, 1, 1, 1;
22, 5, 2, 2, 1, 1, 1, 1;
30, 3, 3, 1, 1, 1, 1, 1, 1;
42, 8, 2, 2, 2, 1, 1, 1, 1, 1;
56, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
77, 14, 7, 4, 2, 2, 1, 1, 1, 1, 1, 1;
101, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
135, 16, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
176, 9, 9, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
231, 22, 5, 5, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
...
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 28 2009
STATUS
approved
Irregular triangle where T(n,k) is the number of integer partitions of n with GCD equal to the k-th divisor of n.
+10
2
1, 1, 1, 2, 1, 3, 1, 1, 6, 1, 7, 2, 1, 1, 14, 1, 17, 3, 1, 1, 27, 2, 1, 34, 6, 1, 1, 55, 1, 63, 7, 3, 2, 1, 1, 100, 1, 119, 14, 1, 1, 167, 6, 2, 1, 209, 17, 3, 1, 1, 296, 1, 347, 27, 7, 2, 1, 1, 489, 1, 582, 34, 6, 3, 1, 1, 775, 14, 2, 1, 945, 55, 1, 1, 1254
OFFSET
1,4
LINKS
Robert Israel, Table of n, a(n) for n = 1..10006 (rows 1 to 1358, flattened)
FORMULA
T(n,k) = A000837(n/A027750(n,k)).
EXAMPLE
Triangle begins:
1
1 1
2 1
3 1 1
6 1
7 2 1 1
14 1
17 3 1 1
27 2 1
34 6 1 1
55 1
63 7 3 2 1 1
100 1
119 14 1 1
167 6 2 1
209 17 3 1 1
296 1
347 27 7 2 1 1
489 1
582 34 6 3 1 1
MAPLE
# with table A000837 obtained from that sequence
f:= proc(n) local D, d;
D:= sort(convert(numtheory:-divisors(n), list), `>`);
seq(A000837[d], d=D)
end proc:
map(f, [$1..60]); # Robert Israel, Jul 09 2020
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], GCD@@#==k&]], {n, 20}, {k, Divisors[n]}]
CROSSREFS
A regular version is A168532. Row lengths are A000005. Row sums are A000041. First column is A000837.
KEYWORD
nonn,tabf,look
AUTHOR
Gus Wiseman, Sep 16 2018
STATUS
approved
a(n) = Sum_{d|n} phi(d)*(n/d)! for n > 0, a(0) = 0.
+10
2
0, 1, 3, 8, 28, 124, 732, 5046, 40352, 362898, 3628932, 39916810, 479002388, 6227020812, 87178296258, 1307674368272, 20922789928384, 355687428096016, 6402373706092350, 121645100408832018, 2432902008180269152, 51090942171709450128, 1124000727777647596830
OFFSET
0,3
COMMENTS
Dirichlet convolution of phi(n) and n! (n >= 1). - Richard L. Ollerton, May 09 2021
LINKS
FORMULA
a(n) = Sum_{i=1..n} gcd(n,i)!. - Ridouane Oudra, Nov 13 2019
MAPLE
with(numtheory); A327030 := n -> add(phi(d)*(n/d)!, d = divisors(n)):
seq(A327030(n), n=0..22);
MATHEMATICA
a[0] = 0; a[n_] := DivisorSum[n, EulerPhi[#] * (n/#)! &]; Array[a, 23, 0] (* Amiram Eldar, May 24 2021 *)
PROG
(PARI) a(n) = if (n>0, sumdiv(n, d, eulerphi(d)*(n/d)!), 0); \\ Michel Marcus, Aug 28 2019
(Magma) [0] cat [&+[EulerPhi(d)*Factorial(n div d):d in Divisors(n)]:n in [1..22]]; // Marius A. Burtea, Nov 13 2019
(Magma) [0] cat [&+[Factorial(Gcd(n, i)):i in [1..n]]:n in [1..22]]; // Marius A. Burtea, Nov 13 2019
CROSSREFS
Similar: A078392 (numbpart), A258171 (bell), A053635 (numbcomb), A181847 and A034738 (numbcomp), this sequence (numbperm).
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 27 2019
STATUS
approved

Search completed in 0.011 seconds