[go: up one dir, main page]

login
A018783
Number of partitions of n into parts having a common factor.
68
0, 0, 1, 1, 2, 1, 4, 1, 5, 3, 8, 1, 14, 1, 16, 9, 22, 1, 38, 1, 45, 17, 57, 1, 94, 7, 102, 30, 138, 1, 218, 1, 231, 58, 298, 21, 451, 1, 491, 103, 644, 1, 919, 1, 1005, 203, 1256, 1, 1784, 15, 1993, 299, 2439, 1, 3365, 62, 3735, 492, 4566, 1, 6252, 1, 6843, 819, 8349, 107, 11096
OFFSET
0,5
LINKS
L. Naughton, G. Pfeiffer, Integer Sequences Realized by the Subgroup Pattern of the Symmetric Group, J. Int. Seq. 16 (2013) #13.5.8
FORMULA
a(n) = -Sum_{d|n, d<n} moebius(n/d)*A000041(d) = A000041(n) - A000837(n). - Vladeta Jovovic, Jun 17 2003
MAPLE
with(numtheory): with(combinat):
a:= n-> `if`(n=0, 0,
numbpart(n) -add(mobius(n/d)*numbpart(d), d=divisors(n))):
seq(a(n), n=0..100); # Alois P. Heinz, Nov 29 2011
MATHEMATICA
A000837[n_] := Sum[ MoebiusMu[n/d]*PartitionsP[d], {d, Divisors[n]}]; a[0] = 0; a[n_] := PartitionsP[n] - A000837[n]; Table[a[n], {n, 0, 66}] (* Jean-François Alcover, Oct 03 2013, after Vladeta Jovovic *)
PROG
(PARI) a(n) = - sumdiv(n, d, (d<n)*moebius(n/d)*numbpart(d)); \\ Michel Marcus, Oct 07 2017
CROSSREFS
KEYWORD
nonn
STATUS
approved