[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256553
Triangle T(n,k) in which the n-th row contains the increasing list of distinct orders of degree-n permutations; n>=0, 1<=k<=A009490(n).
4
1, 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 10, 12, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20, 21, 30
OFFSET
0,4
LINKS
FORMULA
Sum_{k>=0} T(n,k)*A256554(n,k) = A181844(n).
T(n,k) = k for n>0 and 1<=k<=n.
EXAMPLE
Triangle T(n,k) begins:
1;
1;
1, 2;
1, 2, 3;
1, 2, 3, 4;
1, 2, 3, 4, 5, 6;
1, 2, 3, 4, 5, 6;
1, 2, 3, 4, 5, 6, 7, 10, 12;
1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 15;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 20, 21, 30;
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=1, x,
b(n, i-1)+(p-> add(coeff(p, x, t)*x^ilcm(t, i),
t=1..degree(p)))(add(b(n-i*j, i-1), j=1..n/i)))
end:
T:= n->(p->seq((h->`if`(h=0, [][], i))(coeff(p, x, i))
, i=1..degree(p)))(b(n$2)):
seq(T(n), n=0..12);
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, x,
b[n, i - 1] + Function[p, Sum[Coefficient[p, x, t]*x^LCM[t, i],
{t, 1, Exponent[p, x]}]][Sum[b[n - i*j, i - 1], {j, 1, n/i}]]];
T[n_] := Function[p, Table[Function[h, If[h == 0, Nothing, i]][
Coefficient[p, x, i]], {i, 1, Exponent[p, x]}]][b[n, n]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Jul 15 2021, after Alois P. Heinz *)
CROSSREFS
Row sums give A060179.
Row lengths give A009490.
Last elements of rows give A000793.
Main diagonal gives A000027.
Sequence in context: A066041 A194965 A243712 * A194896 A212721 A222417
KEYWORD
nonn,look,tabf
AUTHOR
Alois P. Heinz, Apr 01 2015
STATUS
approved