[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a168534 -id:a168534
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sum of GCD's of parts in all partitions of n.
+10
13
1, 3, 5, 9, 11, 20, 21, 35, 42, 61, 66, 112, 113, 168, 210, 279, 313, 461, 508, 719, 852, 1088, 1277, 1756, 2006, 2573, 3106, 3937, 4593, 5958, 6872, 8676, 10305, 12655, 15009, 18664, 21673, 26559, 31447, 38217, 44623, 54386, 63303, 76379, 89696, 106879
OFFSET
1,2
COMMENTS
Equals row sums of triangle A168534. - Gary W. Adamson, Nov 28 2009
LINKS
FORMULA
a(n) = Sum_{d|n} d * A000837(n/d).
a(n) = Sum_{d|n} phi(n/d)*numbpart(d) = Sum_{d|n} A000010(n/d)*A000041(d). - Vladeta Jovovic, May 08 2003
From Richard L. Ollerton, May 06 2021: (Start)
a(n) = Sum_{k=1..n} A000041(gcd(n,k)).
a(n) = Sum_{k=1..n} A000041(n/gcd(n,k))*A000010(gcd(n,k))/A000010(n/gcd(n,k)). (End)
EXAMPLE
Partitions of 4 are 1+1+1+1, 1+1+2, 2+2, 1+3, 4, the corresponding GCD's of parts are 1,1,2,1,4 and their sum is a(4) = 9.
MAPLE
with(numtheory): with(combinat):
a:= n-> add(phi(n/d)*numbpart(d), d=divisors(n)):
seq(a(n), n=1..50); # Alois P. Heinz, Apr 02 2015
MATHEMATICA
a[n_] := Sum[EulerPhi[n/d]*PartitionsP[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jul 01 2015, after Alois P. Heinz *)
CROSSREFS
Cf. A000010, A000041, A168534, A181844 (the same for LCM), A319301.
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Dec 24 2002
STATUS
approved
Triangle read by rows, A000012 * A168532, as infinite lower triangular matrices.
+10
1
1, 2, 1, 4, 1, 1, 7, 2, 1, 1, 13, 2, 1, 1, 1, 20, 4, 2, 1, 1, 1, 34, 4, 2, 1, 1, 1, 1, 51, 7, 2, 2, 1, 1, 1, 1, 78, 7, 4, 2, 1, 1, 1, 1, 1, 112, 13, 4, 2, 2, 2, 21, 1, 1, 167, 13, 4, 2, 2, 1, 1, 1, 1, 1, 1, 230, 20, 7, 4, 2, 2, 21, 1, 1, 1, 1, 1
OFFSET
1,2
COMMENTS
Row sums = A026905: (1, 3, 6, 11, 18, 29, 44, 66,...)
Triangle A168534 = A168532 * A000012
FORMULA
Triangle read by rows, A000012 * A168532; where A000012 = an infinite lower
triangular matrix with all 1's. The operation takes partial sums of A168532
column terms.
EXAMPLE
First few rows of the triangle =
1;
2, 1;
4, 1, 1;
7, 2, 1, 1;
13, 2, 1, 1, 1;
20, 4, 2, 1, 1, 1;
34, 4, 2, 1, 1, 1, 1;
51, 7, 2, 2, 1, 1, 1, 1;
78, 7, 4, 2, 1, 1, 1, 1, 1;
112, 13, 4, 2, 2, 1, 1, 1, 1, 1;
167, 13, 4, 2, 2, 1, 1, 1, 1, 1, 1;
230, 20, 7, 4, 2, 2, 1, 1, 1, 1, 1, 1;
330, 20, 7, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1;
449, 34, 7, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
616, 34, 13, 4, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
825, 51, 13, 7, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1;
1121, 51, 13, 7, 4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Nov 28 2009
STATUS
approved

Search completed in 0.010 seconds