OFFSET
1,2
COMMENTS
REFERENCES
M. Aigner and C. M. Ziegler, Proofs from The Book, Chapter 2, Springer, NY, 2001.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1989, p. 19.
S. Ramanujan, Collected Papers of Srinivasa Ramanujan (G. H. Hardy, S. Aiyar, P. Venkatesvara and B. M. Wilson, eds.), Amer. Math. Soc., Providence, 2000, pp. 208-209. [Jonathan Sondow, Aug 03 2008]
LINKS
T. D. Noe, Table of n, a(n) for n=1..97 (no other n < 10^6)
T. Hashimoto, On a certain relation between Legendre's conjecture and Bertrand's postulate, arXiv:0807.3690 [math.GM], 2008.
M. Hassani, Counting primes in the interval (n^2,(n+1)^2), arXiv:math/0607096 [math.NT], 2006.
J. Pintz, Landau's problems on primes
S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
J. Sondow, Ramanujan Prime in MathWorld.
J. Sondow and E. W. Weisstein, Bertrand's Postulate in MathWorld.
Eric Weisstein's World of Mathematics, Legendre's Conjecture.
FORMULA
A143223(a(n)) = 0.
EXAMPLE
There is the same number of primes (namely 3) between 9^2 and 10^2 as between 9 and 2*9, so 9 is a term.
MAPLE
with(numtheory): A143224:=n->`if`(pi((n+1)^2)-pi(n^2) = pi(2*n)-pi(n), n, NULL): seq(A143224(n), n=0..2000); # Wesley Ivan Hurt, Jul 25 2017
MATHEMATICA
L={}; Do[If[PrimePi[(n+1)^2]-PrimePi[n^2] == PrimePi[2n]-PrimePi[n], L=Append[L, n]], {n, 0, 2000}]; L
(* Second program *)
With[{nn = 2000}, {0}~Join~Position[#, {0}][[All, 1]] &@ Map[Differences, Transpose@ {Differences@ Array[PrimePi[#^2] &, nn], Array[PrimePi[2 #] - PrimePi[#] &, nn - 1]}]] (* Michael De Vlieger, Jul 25 2017 *)
PROG
(PARI) is(n) = primepi((n+1)^2)-primepi(n^2)==primepi(2*n)-primepi(n) \\ Felix Fröhlich, Jul 25 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Jul 31 2008
STATUS
approved