[go: up one dir, main page]

login
A143224
Numbers n such that (number of primes between n^2 and (n+1)^2) = (number of primes between n and 2n).
10
0, 9, 36, 37, 46, 49, 85, 102, 107, 118, 122, 127, 129, 140, 157, 184, 194, 216, 228, 360, 365, 377, 378, 406, 416, 487, 511, 571, 609, 614, 672, 733, 767, 806, 813, 863, 869, 916, 923, 950, 978, 988, 1249, 1279, 1280, 1385, 1427, 1437, 1483, 1539, 1551, 1690
OFFSET
1,2
COMMENTS
The sequence gives the positions of zeros in A143223. The number of primes in question is A143225(n).
Legendre's conjecture (still open) says there is always a prime between n^2 and (n+1)^2. Bertrand's postulate (actually a theorem due to Chebyshev) says there is always a prime between n and 2n.
REFERENCES
M. Aigner and C. M. Ziegler, Proofs from The Book, Chapter 2, Springer, NY, 2001.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 5th ed., Oxford Univ. Press, 1989, p. 19.
S. Ramanujan, Collected Papers of Srinivasa Ramanujan (G. H. Hardy, S. Aiyar, P. Venkatesvara and B. M. Wilson, eds.), Amer. Math. Soc., Providence, 2000, pp. 208-209. [Jonathan Sondow, Aug 03 2008]
LINKS
T. D. Noe, Table of n, a(n) for n=1..97 (no other n < 10^6)
M. Hassani, Counting primes in the interval (n^2,(n+1)^2), arXiv:math/0607096 [math.NT], 2006.
S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
J. Sondow and E. W. Weisstein, Bertrand's Postulate in MathWorld.
Eric Weisstein's World of Mathematics, Legendre's Conjecture.
FORMULA
A143223(a(n)) = 0.
EXAMPLE
There is the same number of primes (namely 3) between 9^2 and 10^2 as between 9 and 2*9, so 9 is a term.
MAPLE
with(numtheory): A143224:=n->`if`(pi((n+1)^2)-pi(n^2) = pi(2*n)-pi(n), n, NULL): seq(A143224(n), n=0..2000); # Wesley Ivan Hurt, Jul 25 2017
MATHEMATICA
L={}; Do[If[PrimePi[(n+1)^2]-PrimePi[n^2] == PrimePi[2n]-PrimePi[n], L=Append[L, n]], {n, 0, 2000}]; L
(* Second program *)
With[{nn = 2000}, {0}~Join~Position[#, {0}][[All, 1]] &@ Map[Differences, Transpose@ {Differences@ Array[PrimePi[#^2] &, nn], Array[PrimePi[2 #] - PrimePi[#] &, nn - 1]}]] (* Michael De Vlieger, Jul 25 2017 *)
PROG
(PARI) is(n) = primepi((n+1)^2)-primepi(n^2)==primepi(2*n)-primepi(n) \\ Felix Fröhlich, Jul 25 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Jul 31 2008
STATUS
approved