[go: up one dir, main page]

login
Search: a003437 -id:a003437
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of inequivalent labeled Hamiltonian circuits on n-octahedron. Interlacing chords joining 2n points on circle.
(Formerly M3638)
+10
29
1, 0, 1, 4, 31, 293, 3326, 44189, 673471, 11588884, 222304897, 4704612119, 108897613826, 2737023412199, 74236203425281, 2161288643251828, 67228358271588991, 2225173863019549229, 78087247031912850686, 2896042595237791161749, 113184512236563589997407
OFFSET
0,4
COMMENTS
Also called the relaxed ménage problem (cf. A000179).
a(n) can be seen as a subset of the unordered pairings of the first 2n integers (A001147) with forbidden pairs (1,2n) and (i,i+1) for all i in [1,2n-1] (all adjacent integers modulo 2n). The linear version of this constraint is A000806. - Olivier Gérard, Feb 08 2011
Number of perfect matchings in the complement of C_{2n} where C_{2n} is the cycle graph on 2n vertices. - Andrew Howroyd, Mar 15 2016
Also the number of 2-uniform set partitions of {1...2n} containing no two cyclically successive vertices in the same block. - Gus Wiseman, Feb 27 2019
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
Kenneth P. Bogart and Peter G. Doyle, Nonsexist solution of the menage problem, Amer. Math. Monthly 93:7 (1986), 514-519.
Robert Cori and G. Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992 [math.CO], 2017.
M. Hazewinkel and V. V. Kalashnikov, Counting Interlacing Pairs on the Circle, CWI report AM-R9508 (1995)
Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017.
E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 1-4.
FORMULA
a(n) = A003435(n)/(n!*2^n).
a(n) = 2*n*a(n-1)-2*(n-3)*a(n-2)-a(n-3) for n>4. [Corrected by Vasu Tewari, Apr 11 2010, and by R. J. Mathar, Oct 02 2013]
G.f.: x + ((1-x)/(1+x)) * Sum_{n>=0} A001147(n)*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 27 2007
a(n) ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Aug 13 2013
a(n) = (-1)^n*2*hypergeom([n, -n], [], 1/2) for n >= 2. - Peter Luschny, Nov 10 2016
MAPLE
A003436 := proc(n) local k;
if n = 0 then 1
elif n = 1 then 0
else add( (-1)^k*binomial(n, k)*2*n/(2*n-k)*2^k*(2*n-k)!/2^n/n!, k=0..n) ;
end if;
end proc: # R. J. Mathar, Dec 11 2013
A003436 := n-> `if`(n<2, 1-n, (-1)^n*2*hypergeom([n, -n], [], 1/2)):
seq(simplify(A003436(n)), n=0..18); # Peter Luschny, Nov 10 2016
MATHEMATICA
a[n_] := (2*n-1)!! * Hypergeometric1F1[-n, 1-2*n, -2]; a[1] = 0;
Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Apr 05 2013 *)
twounifll[{}]:={{}}; twounifll[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@twounifll[Complement[set, s]]]/@Table[{i, j}, {j, If[i==1, Select[set, 2<#<Last[set]&], Select[set, #>i+1&]]}];
Table[Length[twounifll[Range[n]]], {n, 0, 14, 2}] (* Gus Wiseman, Feb 27 2019 *)
CROSSREFS
Cf. A003435, A129348. A003437 gives unlabeled case.
First differences of A000806.
Column k=2 of A324428.
KEYWORD
nonn,easy,nice
EXTENSIONS
a(0)=1 prepended by Gus Wiseman, Feb 27 2019
STATUS
approved
Number of pairings on a bracelet; number of chord diagrams that can be turned over and having n chords.
+10
20
1, 1, 2, 5, 17, 79, 554, 5283, 65346, 966156, 16411700, 312700297, 6589356711, 152041845075, 3811786161002, 103171594789775, 2998419746654530, 93127358763431113, 3078376375601255821, 107905191542909828013, 3997887336845307589431
OFFSET
0,3
COMMENTS
Place 2n points equally spaced on a circle. Draw lines to pair up all the points so that each point has exactly one partner. Allow turning over.
REFERENCES
R. C. Read, Some Enumeration Problems in Graph Theory. Ph.D. Dissertation, Department of Mathematics, Univ. London, 1958.
LINKS
W. Y.-C. Chen, D. C. Torney, Equivalence classes of matchings and lattice-square designs, Discr. Appl. Math. 145 (3) (2005) 349-357.
Étienne Ghys, A Singular Mathematical Promenade, arXiv:1612.06373 [math.GT], 2016-2017. See p. 252.
A. Khruzin, Enumeration of chord diagrams, arXiv:math/0008209 [math.CO], 2000.
V. A. Liskovets, Some easily derivable sequences, J. Integer Sequences, 3 (2000), #00.2.2.
R. J. Mathar, Chord Diagrams A054499 (2018)
R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019)
R. C. Read, Letter to N. J. A. Sloane, Feb 04 1971 (gives initial terms of this sequence)
Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233.
FORMULA
a(n) = (2*A007769(n) + A047974(n) + A047974(n-1))/4 for n > 0.
EXAMPLE
For n=3, there are 5 bracelets with 3 pairs of beads. They are represented by the words aabbcc, aabcbc, aabccb, abacbc, and abcabc. All of the 6!/(2*2*2) = 90 combinations can be derived from these by some combination of relabeling the pairs, rotation, and reflection. So a(3) = 5. - Michael B. Porter, Jul 27 2016
MATHEMATICA
max = 19;
alpha[p_, q_?EvenQ] := Sum[Binomial[p, 2*k]*q^k*(2*k-1)!!, {k, 0, max}];
alpha[p_, q_?OddQ] := q^(p/2)*(p-1)!!;
a[0] = 1;
a[n_] := 1/4*(Abs[HermiteH[n-1, I/2]] + Abs[HermiteH[n, I/2]] + (2*Sum[Block[{q = (2*n)/p}, alpha[p, q]*EulerPhi[q]], {p, Divisors[ 2*n]}])/(2*n));
Table[a[n], {n, 0, max}] (* Jean-François Alcover, Sep 05 2013, after R. J. Mathar; corrected by Andrey Zabolotskiy, Jul 27 2016 *)
CROSSREFS
Cf. A007769, A104256, A279207, A279208, A003437 (loopless chord diagrams), A322176 (marked chords), A362657, A362658, A362659 (three, four, five instances of each color rather than two), A371305 (Multiset Transf.), A260847 (directed chords).
KEYWORD
nonn,easy,nice
AUTHOR
Christian G. Bower, Apr 06 2000 based on a problem by Wouter Meeussen
EXTENSIONS
Corrected and extended by N. J. A. Sloane, Oct 29 2006
a(0)=1 prepended back again by Andrey Zabolotskiy, Jul 27 2016
STATUS
approved
Number of (directed) Hamiltonian circuits in the cocktail party graph of order n.
+10
9
0, 2, 32, 1488, 112512, 12771840, 2036229120, 434469611520, 119619533537280, 41303040523960320, 17481826772405452800, 8902337068174698086400, 5370014079716477003366400, 3786918976243761421064601600, 3087031512410698159166482022400, 2880726660365605475506018320384000
OFFSET
1,2
COMMENTS
Also, the number of ways (up to rotations) to seat n married couples at a circular table with no spouses next to each other. Cf. A007060, A193639. - Geoffrey Critzer, Feb 09 2014
The cocktail party graph may also be called the n-octahedron, n-orthoplex or n-dimensional cross polytope. - Andrew Howroyd, May 14 2017
LINKS
Eric Weisstein's World of Mathematics, Cocktail Party Graph
Eric Weisstein's World of Mathematics, Hamiltonian Cycle
FORMULA
For n>=2, a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*(2*n-1-k)!*2^k. - Geoffrey Critzer, Feb 09 2014
Recurrence (for n>=4): (2*n-3)*a(n) = 2*(n-1)*(4*n^2 - 8*n + 5)*a(n-1) + 4*(n-2)*(n-1)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Feb 09 2014
a(n) ~ sqrt(Pi) * 2^(2*n) * n^(2*n-1/2) / exp(2*n+1). - Vaclav Kotesovec, Feb 09 2014
For n>=2, a(n) = (-1 + 2 n)! Hypergeometric1F1[-n, 1 - 2 n, -2]. - Eric W. Weisstein, Mar 29 2014
a(n) = A003435(n) / (2*n) = A003436(n) * (n-1)! * 2^(n-1). - Andrew Howroyd, May 14 2017
MAPLE
a:= proc(n) option remember; `if`(n<3, n*(n-1),
((136*n^3-608*n^2+762*n-470) *a(n-1)
+4*(n-2)*(14*n^2+29*n-193) *a(n-2)
-80*(n-2)*(n-3)*(n-4) *a(n-3)) /(34*n-101))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Feb 09 2014
MATHEMATICA
Prepend[Table[Sum[(-1)^i Binomial[n, i] (2n - 1 - i)! 2^i, {i, 0, n}], {n, 2, 16}], 0] (* Geoffrey Critzer, Feb 09 2014 *)
Table[Piecewise[{{(-1 + 2 n)! Hypergeometric1F1[-n, 1 - 2 n, -2],
n > 1}}], {n, 16}] (* Eric W. Weisstein, Mar 29 2014 *)
PROG
(PARI) { A129348(n) = sum(m=0, n-1, sum(k=1, n-m, (-1)^k * binomial(n-1, m) * binomial(n-m-1, k-1) * 2^(k-1) * ([0, k-1, 2*(n-m-k); 1, k-2, 2*(n-m-k); 1, k-1, 2*(n-m-k-1)]^(2*n))[1, 1] ) + sum(k=0, n-m, (-1)^k * binomial(n-1, m) * binomial(n-m-1, k) * 2^(k-1) * ([0, k, 2*(n-m-k-1); 2, k-1, 2*(n-m-k-1); 2, k, 2*(n-m-k-2)]^(2*n))[1, 1] ) ) } \\ Max Alekseyev, Dec 22 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 10 2007
EXTENSIONS
Terms a(6) onward from Max Alekseyev, Nov 10 2007
STATUS
approved
a(n) is the number of simple linear diagrams with n+1 chords.
+10
4
0, 1, 3, 24, 211, 2325, 30198, 452809, 7695777, 146193678, 3069668575, 70595504859, 1764755571192, 47645601726541, 1381657584006399, 42829752879449400, 1413337528735664887, 49465522112961344241, 1830184115528550306438, 71375848864779552073957
OFFSET
0,3
LINKS
E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
FORMULA
E.g.f.: (1-sqrt(1-2*x))*(1-2*x)^(-3/2)*exp(-1-x+sqrt(1-2*x)).
a(n) ~ 2^(n+3/2) * n^(n+1) / exp(n+3/2). - Vaclav Kotesovec, Dec 07 2016
a(n) = (2*n-1)*a(n-1) + (4*n-3)*a(n-2) + (2*n-4)*a(n-3). - Gheorghe Coserea, Dec 10 2016
MATHEMATICA
a[0] = 0; a[1] = 1; a[2] = 3; a[n_] := a[n] = (2 n - 1) a[n - 1] + (4 n - 3) a[n - 2] + (2 n - 4) a[n - 3]; Table[a@ n, {n, 0, 19}] (* Michael De Vlieger, Dec 10 2016 *)
PROG
(PARI)
seq(N) = {
my(a = vector(N)); a[1]=1; a[2]=3; a[3]=24;
for (n=4, N, a[n] = (2*n-1)*a[n-1] + (4*n-3)*a[n-2] + (2*n-4)*a[n-3]);
concat(0, a);
};
seq(20) \\ Gheorghe Coserea, Dec 10 2016
(PARI)
N = 20; x = 'x + O('x^N);
concat(0, Vec(serlaplace((1-sqrt(1-2*x))*(1-2*x)^(-3/2)*exp(-1-x+sqrt(1-2*x))))) \\ Gheorghe Coserea, Dec 10 2016
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 07 2016
EXTENSIONS
Offset corrected by Gheorghe Coserea, Dec 10 2016
STATUS
approved
a(n) = number of loopless diagrams by number of K_4 up to all symmetries.
+10
4
0, 1, 13, 2576, 2081393, 3309962320, 8755277273334, 35815698613833466, 214713439275724149414, 1808298469877117320495867
OFFSET
1,3
LINKS
Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017. See Appendix Table 3.
KEYWORD
nonn,more
AUTHOR
Michael De Vlieger, Nov 01 2021
STATUS
approved
a(n) = number of loopless diagrams by number of K_5 up to all symmetries.
+10
4
0, 1, 42, 112418, 1105696796, 24178822553773, 1029696155560021174, 77938101941693076258854
OFFSET
1,3
LINKS
Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017. See Appendix Table 4.
KEYWORD
nonn,more
AUTHOR
Michael De Vlieger, Nov 01 2021
STATUS
approved
a(n) = number of loopless diagrams by number of K_6 up to all symmetries.
+10
4
0, 1, 203, 5765385, 662305416760, 202380163158922023, 141390361908351519807928
OFFSET
1,3
LINKS
Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, Enumeration of Labelled and Unlabelled Hamiltonian Cycles in Complete k-partite Graphs, arXiv:1709.03218 [math.CO], 2017. See Appendix Table 5.
KEYWORD
nonn,more
AUTHOR
Michael De Vlieger, Nov 01 2021
STATUS
approved
Number of directed Hamiltonian circuits on n-octahedron with a marked starting node.
(Formerly M4578)
+10
3
8, 192, 11904, 1125120, 153262080, 28507207680, 6951513784320, 2153151603671040, 826060810479206400, 384600188992919961600, 213656089636192754073600, 139620366072628402087526400, 106033731334825319789808844800
OFFSET
2,1
COMMENTS
Also called the relaxed menage problem (cf. A000179).
These are labeled and the order and starting point matter.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Kenneth P. Bogart and Peter G. Doyle, Nonsexist solution of the menage problem, Amer. Math. Monthly 93 (1986), no. 7, 514-519.
D. Singmaster, Enumerating unlabeled Hamiltonian circuts, Preprint (1974).
D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 1-4.
Eric Weisstein's World of Mathematics, Cocktail Party Graph
FORMULA
For n >= 2, a(n) = Sum_{k=0..n}(-1)^k*binomial(n, k)*((2*n)/(2*n-k))*2^k*(2*n-k)!.
Conjecture: a(n) -(4*n^2 - 2*n + 5)*a(n-1) + 2*(n-1)*(4*n-17)*a(n-2) + 12*(n-1)*(n-2)*a(n-3) = 0. - R. J. Mathar, Oct 02 2013
Recurrence: (2*n-3)*a(n) = 2*n*(4*n^2 - 8*n + 5)*a(n-1) + 4*(n-1)*n*(2*n-1)*a(n-2). - Vaclav Kotesovec, Feb 12 2014
a(n) ~ sqrt(Pi) * 2^(2*n+1) * n^(2*n+1/2) / exp(2*n+1). - Vaclav Kotesovec, Feb 12 2014
a(n) = -(-2)^(n+1)*n!*hypergeom([n, -n], [], 1/2). - Peter Luschny, Nov 10 2016
EXAMPLE
n=2: label vertices of a square 1,2,3,4. Then the 8 Hamiltonian circuits are 1234, 1432, 2341, 2143, 3412, 3214, 4123, 4321; so a(2) = 8.
MAPLE
A003435 := n->add((-1)^k*binomial(n, k)*((2*n)/(2*n-k))*2^k*(2*n-k)!, k=0..n);
MATHEMATICA
a[n_] := 2^n*n!*(2n-1)!!*Hypergeometric1F1[-n, 1-2n, -2]; Table[ a[n], {n, 2, 14}] (* Jean-François Alcover, Nov 04 2011 *)
PROG
(PARI) a(n)=sum(k=0, n, (-1)^k*binomial(n, k)*((2*n)/(2*n-k))*2^k*(2*n-k)!) \\ Charles R Greathouse IV, Nov 04 2011
(Magma) [(&+[ (-1)^k*2^(k+1)*n*Binomial(n, k)*Factorial(2*n-k-1): k in [0..n]]) : n in [2..20]]; // G. C. Greubel, Nov 17 2022
(SageMath) [sum( (-1)^k*2^(k+1)*n*binomial(n, k)*factorial(2*n-k-1) for k in (0..n)) for n in (2..20)] # G. C. Greubel, Nov 17 2022
CROSSREFS
KEYWORD
nonn,nice,easy
EXTENSIONS
Name made more precise by Andrew Howroyd, May 14 2017
STATUS
approved
Number of simple chord-labeled chord diagrams with n chords.
+10
3
0, 1, 1, 21, 168, 1968, 26094, 398653, 6872377, 132050271, 2798695656, 64866063276, 1632224748984, 44316286165297, 1291392786926821, 40202651019430461, 1331640833909877144, 46762037794122159492, 1735328399106396110310, 67858430028772637693845
OFFSET
1,4
LINKS
E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
FORMULA
E.g.f.: (1+sqrt(1-2*t))*(1-2*t)^(-1/2)*exp(-1-t+sqrt(1-2*t))-(2-t)*exp(-t).
a(n) ~ 2^(n+1/2) * n^n / exp(n+3/2). - Vaclav Kotesovec, Dec 07 2016
Conjecture D-finite with recurrence: +(-n+2)*a(n) +(2*n^2-8*n+7)*a(n-1) +(6*n^2-18*n+11)*a(n-2) +(n-1)*(6*n-11)*a(n-3) +2*(n-1)*(n-2)*a(n-4)=0. - R. J. Mathar, Jan 27 2020
MATHEMATICA
terms = 20;
CoefficientList[(Sqrt[1 - 2t]+1)(1/Sqrt[1 - 2t])*E^(Sqrt[1 - 2t] - t - 1) - (2-t)/E^t + O[t]^(terms+1), t]*Range[0, terms]! // Rest (* Jean-François Alcover, Sep 14 2018 *)
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 07 2016
STATUS
approved
Number of simple chord diagrams with n chords, up to rotation.
+10
3
0, 1, 1, 4, 21, 176, 1893, 25030, 382272, 6604535, 127222636, 2702798537, 62778105236, 1582725739329, 43046433007765, 1256332883208474, 39165907107963273, 1298945495674093932, 45666536827274985585, 1696460750775267473762
OFFSET
1,4
LINKS
E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 07 2016
STATUS
approved

Search completed in 0.009 seconds