# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a278992 Showing 1-1 of 1 %I A278992 #29 Nov 03 2021 06:03:39 %S A278992 0,1,1,21,168,1968,26094,398653,6872377,132050271,2798695656, %T A278992 64866063276,1632224748984,44316286165297,1291392786926821, %U A278992 40202651019430461,1331640833909877144,46762037794122159492,1735328399106396110310,67858430028772637693845 %N A278992 Number of simple chord-labeled chord diagrams with n chords. %H A278992 E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016. %H A278992 E. Krasko and A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43. %F A278992 E.g.f.: (1+sqrt(1-2*t))*(1-2*t)^(-1/2)*exp(-1-t+sqrt(1-2*t))-(2-t)*exp(-t). %F A278992 a(n) ~ 2^(n+1/2) * n^n / exp(n+3/2). - _Vaclav Kotesovec_, Dec 07 2016 %F A278992 Conjecture D-finite with recurrence: +(-n+2)*a(n) +(2*n^2-8*n+7)*a(n-1) +(6*n^2-18*n+11)*a(n-2) +(n-1)*(6*n-11)*a(n-3) +2*(n-1)*(n-2)*a(n-4)=0. - _R. J. Mathar_, Jan 27 2020 %t A278992 terms = 20; %t A278992 CoefficientList[(Sqrt[1 - 2t]+1)(1/Sqrt[1 - 2t])*E^(Sqrt[1 - 2t] - t - 1) - (2-t)/E^t + O[t]^(terms+1), t]*Range[0, terms]! // Rest (* _Jean-François Alcover_, Sep 14 2018 *) %Y A278992 Cf. A003436, A003437, A007474, A278990, A278991, A278993, A278994. %K A278992 nonn %O A278992 1,4 %A A278992 _N. J. A. Sloane_, Dec 07 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE