[go: up one dir, main page]

login
A003437
Number of unlabeled Hamiltonian circuits on n-octahedron (cross polytope); also number of circular chord diagrams with n chords, modulo symmetries.
(Formerly M1781)
12
0, 1, 2, 7, 29, 196, 1788, 21994, 326115, 5578431, 107026037, 2269254616, 52638064494, 1325663757897, 36021577975918, 1050443713185782, 32723148860301935, 1084545122297249077, 38105823782987999742, 1414806404051118314077
OFFSET
1,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Kristin DeSplinter, Satyan L. Devadoss, Jordan Readyhough, and Bryce Wimberly, Unfolding cubes: nets, packings, partitions, chords, arXiv:2007.13266 [math.CO], 2020.
S. Jablan, R. Sazdanovic, Knots, Links, and Self-avoiding curves, Forma 22 (1) (2007) 5-13. In the denominator on page 8, n-k should read 2n-k.
E. Krasko, A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, arXiv preprint arXiv:1601.05073 [math.CO], 2016.
E. Krasko, A. Omelchenko, Enumeration of Chord Diagrams without Loops and Parallel Chords, The Electronic Journal of Combinatorics, 24(3) (2017), #P3.43.
D. Singmaster, Hamiltonian circuits on the n-dimensional octahedron, J. Combinatorial Theory Ser. B 19 (1975), no. 1, 1-4.
Evert Stenlund, On the Vassiliev Invariants, June 2017.
FORMULA
a(n) ~ 2^(n-3/2) * n^(n-1) / exp(n+1). - Vaclav Kotesovec, Dec 10 2016
MATHEMATICA
nn = 20; M = Array[0&, {2nn, 2nn}];
Mget[n_, k_] := Which[n < 0, 0, n==0, 1, n==1, 1-Mod[k, 2], n==2, k - Mod[k, 2], True, M[[n, k]]];
Mset[n_, k_, v_] := (M[[n, k]] = v);
Minit = Module[{tmp = 0}, For[n = 3, n <= 2nn, n++, For[k = 1, k <= 2nn, k++, tmp = If[OddQ[k], k(n-1) Mget[n-2, k] + Mget[n-4, k], Mget[n-1, k] + k(n-1) Mget[n-2, k] - Mget[n-3, k] + Mget[n-4, k]]; Mset[n, k, tmp]]]];
A007474[n_] := Sum[EulerPhi[d] (Mget[2n/d, d] - Mget[2n/d - 2, d]), {d, Divisors[2n]}]/(2n);
a[n_] := A007474[n]/2 + (Mget[n, 2] - Mget[n-1, 2] + Mget[n-2, 2])/4;
Array[a, nn] (* Jean-François Alcover, Aug 12 2018, after Gheorghe Coserea *)
PROG
(PARI)
N = 20; M = matrix(2*N, 2*N);
Mget(n, k) = { if (n<0, 0, n==0, 1, n==1, 1-(k%2), n==2, k-(k%2), M[n, k]) };
Mset(n, k, v) = { M[n, k] = v; };
Minit() = {
my(tmp = 0);
for (n=3, 2*N, for(k=1, 2*N,
tmp = if (k%2, k*(n-1) * Mget(n-2, k) + Mget(n-4, k),
Mget(n-1, k) + k*(n-1) * Mget(n-2, k) - Mget(n-3, k) + Mget(n-4, k));
Mset(n, k, tmp)));
};
Minit();
A007474(n) = sumdiv(2*n, d, eulerphi(d) * (Mget(2*n/d, d) - Mget(2*n/d-2, d)))/(2*n);
a(n) = A007474(n)/2 + (Mget(n, 2) - Mget(n-1, 2) + Mget(n-2, 2))/4;
vector(N, n, a(n)) \\ Gheorghe Coserea, Dec 10 2016
CROSSREFS
See A003436 for labeled case.
See also A278990, A007474.
Sequence in context: A185310 A143883 A346427 * A192410 A270518 A359950
KEYWORD
nonn,nice
STATUS
approved