[go: up one dir, main page]

login
Search: a002884 -id:a002884
     Sort: relevance | references | number | modified | created      Format: long | short | data
Singular n X n (0,1)-matrices: the number of n X n (0,1)-matrices having distinct, nonzero ordered rows, but having at least two equal columns or at least one zero column.
(Formerly M4306 N1801)
+10
7
0, 6, 350, 43260, 14591171, 14657461469, 46173502811223, 474928141312623525, 16489412944755088235117, 1985178211854071817861662307, 846428472480689964807653763864449, 1299141117072945982773752362381072143359, 7268140170419155675761326840423792818571154945, 149650282980396792665043455999899697765782372693740287
OFFSET
2,2
COMMENTS
This is a lower bound for the set of all n X n (0,1)-matrices having distinct, nonzero ordered rows and determinant 0 (compare A000410).
Here ordered means that we take only one representative from the n! matrices obtained by all permutations of the distinct rows of an n X n matrix.
a(n) is also the number of sets of n distinct nonzero (0,1)-vectors in R^n that do not span R^n.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. Kahn, J. Komlos and E. Szemeredi, On the probability that a random ±1-matrix is singular, J. AMS 8 (1995), 223-240.
Goran Kilibarda and Vladeta Jovovic, Enumeration of some classes of T_0-hypergraphs, arXiv:1411.4187 [math.CO], 2014.
J. Komlos, On the determinant of (0,1)-matrices, Studia Math. Hungarica 2 (1967), 7-21.
N. Metropolis and P. R. Stein, On a class of (0,1) matrices with vanishing determinants, J. Combin. Theory, 3 (1967), 191-198.
FORMULA
a(n) = (-1)*Sum_{k=0..n-1} Stirling1(n+1, k+1)*binomial(2^k-1, n).
a(n) = binomial(2^n-1, n) - A094000(n). - Vladeta Jovovic, Nov 27 2005
MAPLE
with(combinat): T := proc(n) -sum(stirling1(n+1, k+1)*binomial(2^k-1, n), k=0..n-1); end proc:
MATHEMATICA
a[n_] := -Sum[ StirlingS1[n+1, k+1]*Binomial[2^k-1, n], {k, 0, n-1}]; Table[a[n], {n, 2, 15}] (* Jean-François Alcover, Nov 21 2012, from formula *)
PROG
(PARI) a(n) = -sum(k=0, n-1, stirling(n+1, k+1, 1)*binomial(2^k-1, n)); \\ Michel Marcus, Jun 05 2020
(Magma) [ -(&+[StirlingFirst(n+1, k+1)*Binomial(2^k-1, n): k in [0..n-1]]): n in [2..15]]; // G. C. Greubel, Jun 05 2020
(Sage) [sum((-1)^(n+k+1)*stirling_number1(n+1, k+1)*binomial(2^k-1, n) for k in (0..n-1)) for n in (2..15)] # G. C. Greubel, Jun 05 2020
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
Edited by W. Edwin Clark, Nov 02 2003
STATUS
approved
Nonsingular n X n matrices over GF(8).
+10
7
1, 7, 3528, 115379712, 241909719367680, 32467582052437076213760, 278893342293098904613804037898240, 153323163270070838469523866093442017326530560
OFFSET
0,2
LINKS
FORMULA
a(n) = (8^n - 1)*(8^n - 8)*...*(8^n - 8^(n-1)).
a(n) = A109966(n)*A027876(n). - Bruno Berselli, Jan 30 2013
MATHEMATICA
Table[Product[(8^n - 8^j), {j, 0, n-1}], {n, 0, 10}] (* G. C. Greubel, May 14 2019 *)
PROG
(Magma) [1] cat [&*[(8^n-8^k): k in [0..n-1]]: n in [1..10]]; // Bruno Berselli, Jan 30 2013
(PARI) {a(n) = prod(j=0, n-1, 8^n - 8^j)}; \\ G. C. Greubel, May 14 2019
(Sage) [product(8^n - 8^j for j in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 14 2019
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 16 2000
STATUS
approved
Nonsingular n X n matrices over GF(9).
+10
7
1, 8, 5760, 339655680, 1624314979123200, 629282246371356907929600, 19747506525777609095698646040576000, 50195501537943419769100848121708339934527488000
OFFSET
0,2
LINKS
J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher.
FORMULA
a(n) = (9^n - 1)*(9^n - 9)*...*(9^n - 9^(n-1)).
a(n) = A053764(n)*A027877(n). - Bruno Berselli, Jan 30 2013
MATHEMATICA
Table[Product[(9^n - 9^j), {j, 0, n-1}], {n, 0, 10}] (* G. C. Greubel, May 14 2019 *)
PROG
(Magma) [1] cat [&*[(9^n - 9^k): k in [0..n-1]]: n in [1..10]]; // Bruno Berselli, Jan 28 2013
(PARI) {a(n) = prod(j=0, n-1, 9^n - 9^j)}; \\ G. C. Greubel, May 14 2019
(Sage) [product(9^n - 9^j for j in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 14 2019
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Mar 16 2000
STATUS
approved
Number of nonsingular n X n (-1,0,1)-matrices (over the reals).
+10
7
1, 2, 48, 11808, 27947520, 609653621760, 119288919620689920
OFFSET
0,2
COMMENTS
It would be nice to have an estimate for the asymptotic rate of growth.
FORMULA
a(n) = A060722(n) - A057981(n). - Alois P. Heinz, Dec 02 2019
EXAMPLE
a(1) = 2: [1], [ -1].
a(2) = 48: There are 8 choices for the first column, u (say) and then the 2nd column can be anything except 0, u, -u, so 6 choices, giving a total of 8*6 = 48.
MATHEMATICA
(* A brute force solution up to n = 4 *) a[n_] := a[n] = (m = Array[x, {n, n}]; cnt = 0; iter = {#, -1, 1}& /@ Flatten[m]; Do[ If[ Det[m] != 0, cnt++], Evaluate[ Sequence @@ iter]]; cnt); Table[ Print[a[n]]; a[n], {n, 1, 4}] (* Jean-François Alcover, Oct 11 2012 *)
KEYWORD
nonn,nice,more
EXTENSIONS
a(4) from Winston C. Yang (winston(AT)cs.wisc.edu), Aug 27 2000
Entry revised by N. J. A. Sloane, Jan 02 2007
a(5) from Giovanni Resta, Feb 20 2009
a(0)=1 prepended by Alois P. Heinz, Dec 02 2019
a(0)-a(5) confirmed and a(6) added by Minfeng Wang, May 01 2024
STATUS
approved
Vandermonde determinant of the first n terms of (1,2,4,8,16,...).
+10
6
1, 1, 6, 1008, 20321280, 203199794380800, 4096245678214226116608000, 671169825411994707343327912777482240000, 3589459026274030507466469204160461571257625328222208000000, 2511229721141086754031154605327661795863172723306019839389105937236728217600000000
OFFSET
1,3
COMMENTS
Each term divides its successor, as in A002884. Indeed, 2*v(n+1)/v(n) divides v(n+2)/v(n+1), as in A171499.
LINKS
Daniel M. Kane, Carlo Sanna, and Jeffrey Shallit, Waring's theorem for binary powers, arXiv:1801.04483 [math.NT], Jan 13 2018.
FORMULA
From Robert Israel, Jan 16 2018: (Start)
a(n) = Product_{0 <= i < j <= n-1} (2^j - 2^i).
a(n) = 2^(n*(n-1)*(n-2)/6) * Product_{1<=k<=n-1} (2^k-1)^(n-k). (End)
a(n) ~ 1/A335011 * 2^(n*(n-1)*(2*n-1)/6) * QPochhammer(1/2)^n. - Vaclav Kotesovec, May 19 2020
a(n) = Product_{k=0..n-2} ( 2^(k+1)^2 * QPochhammer(2^(-k-1); 2; k+1) ). - G. C. Greubel, Aug 31 2023
MAPLE
# First program
with(LinearAlgebra):
a:= n-> Determinant(VandermondeMatrix([2^i$i=0..n-1])):
seq(a(n), n=1..12); # Alois P. Heinz, Jul 23 2017
# Second program
f:= n -> 2^(n*(n-1)*(n-2)/6)*mul((2^k-1)^(n-k), k=1..n-1):
seq(f(n), n=1..12); # Robert Israel, Jan 16 2018
MATHEMATICA
(* First program *)
f[j_]:= 2^(j-1); z = 15;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
Table[v[n], {n, z}] (* A203303 *)
Table[v[n+1]/v[n], {n, z}] (* A002884 *)
Table[v[n]*v[n+2]/(2*v[n+1]^2), {n, z}] (* A171499 *)
Table[FactorInteger[v[n]], {n, z}]
(* Second program *)
Table[Product[2^(k+1) -2^j, {k, 0, n-2}, {j, 0, k}], {n, 15}] (* G. C. Greubel, Aug 31 2023 *)
PROG
(Magma) [1] cat [(&*[(&*[2^(k+1) -2^j: j in [0..k]]): k in [0..n-2]]): n in [2..15]]; // G. C. Greubel, Aug 31 2023
(SageMath) [product(product(2^(k+1) -2^j for j in range(k+1)) for k in range(n-1)) for n in range(1, 16)] # G. C. Greubel, Aug 31 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 01 2012
STATUS
approved
Number of labeled groups.
+10
5
1, 2, 3, 16, 30, 480, 840, 22080, 68040, 1088640, 3991680, 259459200, 518918400, 16605388800, 163459296000, 10353459916800, 22230464256000, 1867358997504000, 6758061133824000, 648773868847104000, 5474029518397440000, 122618261212102656000
OFFSET
1,2
COMMENTS
From Jianing Song, Mar 02 2024: (Start)
In other words, number of ways to define a group structure on a set of n elements. Note that for a group G, a group structure on the set G is given by mapping (x,y) to sigma^(-1)(sigma(x)*sigma(y)), where sigma is a bijection on the set G; sigma and sigma' give the same structure if and only if sigma' is the composition of a group automorphism of G and sigma.
By definition, a(n) = A034381(n) if n in A003277, otherwise a(n) > A034381(n). The indices of records of a(n)/A034381(n) among the known terms are 1, 4, 8, 16, 24, 32, 48, 64, 96, 128, 192, with a(192)/A034381(192) = 122774329/1640520 ~ 74.8.
Also by definition, a(n) >= A000001(n)*n!/A059773(n). If the conjecture A059773(2^r) = A002884(r) is true, then A059773(2^r) <= 2^(r^2), while A000001(2^r) >= 2^((2/27)*r^2*(r-6)) (see the Math Stack Exchange link below), so a(2^r)/A034381(2^r) tends to infinity quickly as r tends to infinity.
The sequence is strictly increasing for the first 256 terms (a(256) > A034381(256) > A034381(255) = a(255) since 255 is in A003277). On the other hand, assuming that A059773(2^r) = A002884(r), then a(2^20)/(2^20)! >= A000001(2^20)/A002884(20) > 99798.4, while a(2^20+1)/(2^20)! = A034381(2^20+1)/(2^20)! = (2^20+1)/phi(2^20+1) since 2^20+1 = 17*61681 is in A003277, so we would have a(2^20) > a(2^20+1). It is conjectured a(2^r) > a(2^r+1) for all sufficiently large r. (End)
FORMULA
a(n) = n * A058163(n).
a(n) = Sum n!/|Aut(G)|, where the sum is taken over the different products G of cyclic groups with |G| = n.
PROG
(GAP) A034383 := function(n) local fn, sum, k; fn := Factorial(n); sum := 0; for k in [1 .. NrSmallGroups(n)] do sum := sum + fn / Size(AutomorphismGroup(SmallGroup(n, k))); od; return sum; end; # Stephen A. Silver, Feb 10 2013
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Stephen A. Silver, Feb 10 2013
STATUS
approved
Number of nonsingular n X n matrices over GF(11).
+10
5
1, 10, 13200, 2124276000, 41393302251840000, 97602635428252959312000000, 27847155251069188894843979022720000000, 961359275427083998992553051820498439890246400000000
OFFSET
0,2
LINKS
FORMULA
a(n) = (11^n - 1)*(11^n - 11)*...*(11^n - 11^(n-1)).
a(n) = A110195(n)*A027879(n). - Bruno Berselli, Jan 30 2013
MATHEMATICA
Table[Product[11^n - 11^k, {k, 0, n-1}], {n, 0, 10}] (* Vincenzo Librandi, Jan 28 2013 *)
PROG
(Magma) [1] cat [&*[(11^n - 11^k): k in [0..n-1]]: n in [1..10]]; // Bruno Berselli, Jan 28 2013
(PARI) {a(n) = prod(j=0, n-1, 11^n - 11^j)}; \\ G. C. Greubel, May 14 2019
(Sage) [product(11^n - 11^j for j in (0..n-1)) for n in (0..10)] # G. C. Greubel, May 14 2019
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Mar 16 2000
STATUS
approved
Let A_n be the upper triangular matrix in the group GL(n,2) that has zero entries below the main diagonal and 1 elsewhere; a(n) is the size of the conjugacy class of this matrix in GL(n,2).
+10
5
1, 3, 42, 2520, 624960, 629959680, 2560156139520, 41781748196966400, 2732860586067178291200, 715703393163961188325785600, 750102961052993818881476159078400, 3145391744524297920839316348340273152000, 52764474940208177704130232748554603290689536000
OFFSET
1,2
LINKS
FORMULA
a(n) = A002884(n) / 2^(n-1).
EXAMPLE
For example for n=4 the matrix is / 1,1,1,1 / 0,1,1,1 / 0,0,1,1 / 0,0,0,1 /.
MAPLE
a:= n-> 2^((n-1)*(n-2)/2) *mul(2^k-1, k=1..n):
seq(a(n), n=1..15); # Alois P. Heinz, May 14 2013
MATHEMATICA
a[n_] := 2^((n-1)*(n-2)/2)*Product[2^k-1, {k, 1, n}]; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Jun 12 2003
EXTENSIONS
More terms from Eric M. Schmidt, May 14 2013
STATUS
approved
Triangle read by rows: T(n,k) is the number of n X n matrices of rank k over F_2.
+10
5
1, 1, 1, 1, 9, 6, 1, 49, 294, 168, 1, 225, 7350, 37800, 20160, 1, 961, 144150, 4036200, 19373760, 9999360, 1, 3969, 2542806, 326932200, 8543828160, 39687459840, 20158709760, 1, 16129, 42677334, 23435953128, 2812314375360, 71124337751040, 325139829719040, 163849992929280
OFFSET
0,5
LINKS
Robert Israel, Table of n, a(n) for n = 0..1710 (rows 0 to 57, flattened)
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
Wikipedia, q-binomial
FORMULA
T(n,k) = Product_{j=0..k-1} (2^n - 2^j)^2/(2^k - 2^j) = A022166(n,k) * Product_{j=0..k-1} (2^n - 2^j).
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 9, 6;
1, 49, 294, 168;
1, 225, 7350, 37800, 20160;
1, 961, 144150, 4036200, 19373760, 9999360;
...
T(2,1) = 9 because there are 9, 2 X 2 matrices in F_2 that have rank 1: {{0, 0}, {0, 1}}, {{0, 0}, {1, 0}}, {{0, 0}, {1, 1}}, {{0, 1}, {0, 0}}, {{0, 1}, {0, 1}}, {{1, 0}, {0, 0}}, {{1, 0}, {1, 0}}, {{1,1}, {0, 0}}, {{1, 1}, {1, 1}}.
MAPLE
T:= (n, k) -> mul((2^n-2^j)^2/(2^k-2^j), j=0..k-1):
seq(seq(T(n, k), k=0..n), n=0..10); # Robert Israel, May 15 2017
MATHEMATICA
q = 2; Table[Table[Product[(q^n - q^i)^2/(q^k - q^i), {i, 0, k - 1}], {k, 0, n}], {n, 0, 6}] // Grid
CROSSREFS
Main diagonal is A002884.
Column for k = 1 is A060867.
Row sums are A002416.
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, May 07 2017
STATUS
approved
Triangle read by rows: T(n,k) is the number of diagonalizable n X n matrices over GF(2) that have rank k, n >= 0, 0 <= k <= n.
+10
5
1, 1, 1, 1, 6, 1, 1, 28, 28, 1, 1, 120, 560, 120, 1, 1, 496, 9920, 9920, 496, 1, 1, 2016, 166656, 714240, 166656, 2016, 1, 1, 8128, 2731008, 48377856, 48377856, 2731008, 8128, 1, 1, 32640, 44216320, 3183575040, 13158776832, 3183575040, 44216320, 32640, 1
OFFSET
0,5
COMMENTS
Equivalently, T(n,k) is the number of n X n matrices, P, over GF(2) with rank k, such that P^2 = P.
Equivalently, T(n,k) is the number of direct sum decompositions of the vector space GF(2)^n into exactly two subspaces U and W such that the dimension of U is k.
LINKS
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,k)/A002884(n) is the coefficient of y^k*x^n in the expansion of Sum_{n>=0} x^n\A002884(n) * Sum_{n>=0} y*x^n\A002884(n).
T(n,k) = A002884(n)/(A002884(k)*A002884(n-k)) = A022166(n,k)*2^(k(n-k)).
EXAMPLE
Triangle begins:
1;
1, 1;
1, 6, 1;
1, 28, 28, 1;
1, 120, 560, 120, 1;
1, 496, 9920, 9920, 496, 1;
1, 2016, 166656, 714240, 166656, 2016, 1;
MATHEMATICA
nn = 8; g[n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[
QFactorial[n, q]] /. q -> 2; Grid[Map[Select[#, # > 0 &] &,
Table[g[n], {n, 0, nn}] CoefficientList[Series[Sum[(u z)^r/g[r] , {r, 0, nn}] Sum[z^r/g[r], {r, 0, nn}], {z, 0, nn}], {z, u}]]]
CROSSREFS
Cf. A132186 (row sums).
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Dec 15 2017
STATUS
approved

Search completed in 0.041 seconds