[go: up one dir, main page]

login
Search: a002884 -id:a002884
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of semi-simple n X n matrices over GF(2).
+10
2
1, 2, 10, 218, 25426, 11979362, 24071588290, 195647202043778, 6352629358366433026, 829377572450912758955522, 434523953108209440907114707970, 911402584183760891982341170891585538, 7638756947617134519287879000741815013863426, 256253116935172010151547980961815772566257949204482
OFFSET
0,2
COMMENTS
Equivalently, number of n X n matrices over GF(2) that are diagonalizable over the algebraic closure of GF(2).
Equivalently, the number of n X n matrices over GF(2) whose minimal polynomial is a product of distinct irreducible factors, i.e., the minimal polynomial is squarefree.
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
Sum_{n>=0} a(n)x^n/A002884(n) = Product_{d>=1} Sum_{j>=1} x^(j*d)/|GL_j(F_2^d)|)^A001037(d) where |GL_j(F_2^d)| is the order of the general linear group of degree j over the field with 2^d elements.
MATHEMATICA
nn = 13; q = 2; A001037 =Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; \[Gamma]q[j_, d_] :=Table[Product[(q^d)^n - (q^d)^i, {i, 0, n - 1}], {n, 1, nn}][[j]]; Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[ Series[Product[(1 + Sum[u^(j d)/\[Gamma]q[j, d], {j, 1, nn}])^
A001037[[d]], {d, 1, nn}], {u, 0, nn}], u]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Jul 11 2021
STATUS
approved
Number of commuting elements: number of ordered pairs g, h in the group GL(n,2) such that gh = hg.
+10
1
1, 18, 1008, 282240, 269982720, 1209522585600, 19170449172725760, 1315623687226078003200, 342810031916266844848128000, 367173017574548024679647831654400, 1534674653372294809728193910618770636800, 26108462572660693961035262279317764270194688000
OFFSET
1,2
LINKS
FORMULA
a(n) = A002884(n) * A006951(n).
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 13 2003
EXTENSIONS
More terms from Eric M. Schmidt, May 05 2013
STATUS
approved
Sum of the orders of the elements in the group GL(n,2).
+10
1
1, 13, 715, 137047, 151063807, 473437527487, 8759301830031103, 476009298383159238655, 124804541542651896036171775, 116591664734096391445571274997759, 528358596232540118601239210575638560767, 7144378940562638409529946721196600858719027199
OFFSET
1,2
LINKS
PROG
(GAP) A086157 := n -> Sum(ConjugacyClasses(GL(n, 2)), cc->Size(cc) * Order(Representative(cc))); # Eric M. Schmidt, May 18 2013
CROSSREFS
Cf. A002884.
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 25 2003
EXTENSIONS
More terms from Vladeta Jovovic, Aug 31 2003
a(6)-a(10) corrected by and more terms from Eric M. Schmidt, May 18 2013
STATUS
approved
Let A(n) be the matrix in the group GL(n,2) such that for 1 <= i, j <= n: A[i,j] = 1 if i+j = n+1 A[i,j] = 0 if i+j != n+1. a(n) is the size of the centralizer of A(n) in GL(n,2).
+10
1
1, 2, 8, 96, 1536, 86016, 5505024, 1321205760, 338228674560, 335522845163520, 343575393447444480, 1385295986380096143360, 5674172360212873803202560, 92239345887620476544860815360, 1511249443022773887710999598858240, 98654363640526679389774053813465907200
OFFSET
1,2
COMMENTS
The formula was given by Derek Holt (mareg(AT)mimosa.csv.warwick.ac.uk) in this thread from sci.math: http://mathforum.org/discuss/sci.math/t/538859.
FORMULA
For even n = 2m, a(n) = 2^(m^2) * |GL(m, 2)| = 2^(m^2) * A002884(m).
For odd n = 2m+1, a(n) = 2^(m^2+2m) * |GL(m, 2)| = 2^(m^2+2m) * A002884(m).
MATHEMATICA
a[n_] := With[{m = Quotient[n, 2]}, 2^(2 m^2 + 2 m Boole[OddQ[n]]) * QPochhammer[2^-m, 2, m]];
a /@ Range[1, 16] (* Jean-François Alcover, Sep 17 2019 *)
PROG
(GAP)
a:=function(n) local M;
M:=NullMat(n, n); for i in [1..n] do M[i][n+1-i]:=1; od;
return Size(Centralizer(GL(n, Integers mod 2), M * One(Integers mod 2)));
end; # Andrew Howroyd, Jul 13 2018
(PARI) a(n)={my(m=n\2); 2^(m*if(n%2, n+3, n)/2)*prod(i=2, m, 2^i-1)*2^binomial(m, 2)} \\ Andrew Howroyd, Jul 13 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 24 2003
EXTENSIONS
a(8)-a(16) from Andrew Howroyd, Jul 13 2018
STATUS
approved
Let A(n) be the matrix in the group GL(n,2) such that for 1<=i, j<=n: A[i,j] = 1 if i+j = n+1 A[i,j] = 0 if i+j != n+1. a(n) is the size of the conjugacy class of A(n) in GL(n,2).
+10
1
1, 3, 21, 210, 6510, 234360, 29763720, 4047865920, 2068459485120, 1092146608143360, 2235624106869457920, 4650098142288472473600, 38088953883484878031257600, 314462403262051153026062745600, 10303989567687630131204997985075200, 338960040818652280796119613717033779200
OFFSET
1,2
FORMULA
a(n) = A002884(n) / A087540(n).
PROG
(GAP)
a:=function(n) local M;
M:=NullMat(n, n); for i in [1..n] do M[i][n+1-i]:=1; od;
return Size(ConjugacyClass(GL(n, Integers mod 2), M * One(Integers mod 2)));
end; # Andrew Howroyd, Jul 13 2018
(PARI) \\ here b(n) is A002884.
b(n)={prod(i=2, n, 2^i-1)*2^binomial(n, 2)}
a(n)={my(m=n\2); b(n)/(2^(m*if(n%2, n+3, n)/2)*b(m))} \\ Andrew Howroyd, Jul 13 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 26 2003
EXTENSIONS
a(8)-a(16) from Andrew Howroyd, Jul 13 2018
STATUS
approved
Product(6^n - 6^k, k=0..n-1).
+10
1
1, 5, 1050, 8127000, 2273284440000, 22906523331216000000, 8310241106635054164480000000, 108537128570336598656772717772800000000, 51032497739317419104816901041614046625792000000000
OFFSET
0,2
LINKS
FORMULA
a(n) = (6^n - 1)*(6^n - 6)*...*(6^n - 6^(n-1)) for n>0, a(0)=1.
a(n) = A109354(n)*A027873(n). - Bruno Berselli, Jan 30 2013
MATHEMATICA
Table[Product[6^n - 6^k, {k, 0, n-1}], {n, 0, 60}]
PROG
(Magma)
[1] cat [&*[(6^n - 6^k): k in [0..n-1]]: n in [1..8]]; // Bruno Berselli, Jan 28 2013
(Magma) /* By the second formula: */
m:=9;
A109354 := [6^(n*(n-1) div 2): n in [0..m-1]];
A027873 := [1] cat [&*[6^i-1: i in [1..n]]: n in [1..m]];
[A109354[i]*A027873[i]: i in [1..m]]; // Bruno Berselli, Jan 30 2013
CROSSREFS
Sequences given by product(m^n-m^k, k=0..n-1): A002884 (m=2), A053290 (m=3), A053291 (m=4), A053292 (m=5), A053293 (m=7), A052496 (m=8), A052497 (m=9), A052498 (m=11).
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 28 2013
STATUS
approved
Number of nonsingular n X n matrices over GF(13).
+10
1
1, 12, 26208, 9726417792, 610296923230525440, 6471875909051511775903457280, 11598637276362103019770723830073032376320, 3512938445418644176053176560741858449740612202579886080
OFFSET
0,2
LINKS
J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher.
MATHEMATICA
Table[Product[13^n - 13^k, {k, 0, n-1}], {n, 0, 8}]
PROG
(Magma) [1] cat [&*[(13^n - 13^k): k in [0..n-1]]: n in [1..8]]
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Jan 29 2013
STATUS
approved
Number of equivalence classes of n X n nonsingular matrices over GF(2), up to row and column permutation.
+10
1
1, 2, 7, 51, 885, 44206, 6843555, 3373513302, 5366987461839, 27936547529976720, 482768359608369460173, 28090323163597327933723100, 5574677486781815353253212392653, 3816761688188495487649082049091445498, 9106495173413853187392282303788066742174903
OFFSET
1,2
LINKS
Finley Freibert, The Classification of Complementary Information Set Codes of Lengths 14 and 16, Advances in Mathematics of Communications, Vol. 7, No. 3 (2013), 267-278.
N. Ilievska and D. Gligoroski, Error-Detecting Code Using Linear Quasigroups, ICT Innovations 2014, Advances in Intelligent Systems and Computing Volume 311, 2015, pp 309-318.
Ludovic Schwob, Sage program
CROSSREFS
A002884 counts all matrices nonsingular over GF(2).
A116976 counts equivalence classes of binary matrices nonsingular over the reals.
KEYWORD
nonn
AUTHOR
Finley Freibert, Jul 23 2013
EXTENSIONS
a(8) from Brendan McKay, May 25 2020
a(9) onwards from Ludovic Schwob, Sep 25 2023
STATUS
approved
List of orders of finite simple groups which are unit groups of rings.
+10
1
2, 3, 7, 31, 127, 168, 8191, 20160, 131071, 524287, 9999360, 2147483647, 20158709760, 163849992929280, 2305843009213693951, 5348063769211699200, 699612310033197642547200, 618970019642690137449562111, 366440137299948128422802227200, 162259276829213363391578010288127
OFFSET
1,1
COMMENTS
The rings are assumed to be unital, but not necessarily commutative, and ring homomorphisms send 1 to 1.
LINKS
Christopher Davis and Tommy Occhipinti, Which finite simple groups are unit groups?, preprint, J. Pure Appl. Algebra, 218 (2014), no. 4, 743--744. MR3133704.
FORMULA
Union of {2}, A000668 and A002884.
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 03 2014
STATUS
approved
Order of general affine group AGL(n,2) (=A028365(n)) divided by (n+1).
+10
1
1, 1, 8, 336, 64512, 53329920, 184308203520, 2621599886868480, 152122702768688332800, 35820150273699719298416640, 34112245508649716682268134604800, 131089993748184007771243790830298726400, 2029650642403883210241235064170615545004032000
OFFSET
0,3
LINKS
Putnam Exam. 1999, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
FORMULA
a(n) = A028365(n) / (n+1) = 2^n * A002884(n) / (n+1) = 2^n * n! * A053601(n) / (n+1).
KEYWORD
nonn
AUTHOR
Max Alekseyev, Jun 08 2015
STATUS
approved

Search completed in 0.038 seconds