Displaying 51-60 of 88 results found.
Number of semi-simple n X n matrices over GF(2).
+10
2
1, 2, 10, 218, 25426, 11979362, 24071588290, 195647202043778, 6352629358366433026, 829377572450912758955522, 434523953108209440907114707970, 911402584183760891982341170891585538, 7638756947617134519287879000741815013863426, 256253116935172010151547980961815772566257949204482
COMMENTS
Equivalently, number of n X n matrices over GF(2) that are diagonalizable over the algebraic closure of GF(2).
Equivalently, the number of n X n matrices over GF(2) whose minimal polynomial is a product of distinct irreducible factors, i.e., the minimal polynomial is squarefree.
FORMULA
Sum_{n>=0} a(n)x^n/ A002884(n) = Product_{d>=1} Sum_{j>=1} x^(j*d)/|GL_j(F_2^d)|)^ A001037(d) where |GL_j(F_2^d)| is the order of the general linear group of degree j over the field with 2^d elements.
MATHEMATICA
nn = 13; q = 2; A001037 =Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; \[Gamma]q[j_, d_] :=Table[Product[(q^d)^n - (q^d)^i, {i, 0, n - 1}], {n, 1, nn}][[j]]; Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[ Series[Product[(1 + Sum[u^(j d)/\[Gamma]q[j, d], {j, 1, nn}])^
A001037[[d]], {d, 1, nn}], {u, 0, nn}], u]
Number of commuting elements: number of ordered pairs g, h in the group GL(n,2) such that gh = hg.
+10
1
1, 18, 1008, 282240, 269982720, 1209522585600, 19170449172725760, 1315623687226078003200, 342810031916266844848128000, 367173017574548024679647831654400, 1534674653372294809728193910618770636800, 26108462572660693961035262279317764270194688000
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 13 2003
Sum of the orders of the elements in the group GL(n,2).
+10
1
1, 13, 715, 137047, 151063807, 473437527487, 8759301830031103, 476009298383159238655, 124804541542651896036171775, 116591664734096391445571274997759, 528358596232540118601239210575638560767, 7144378940562638409529946721196600858719027199
PROG
(GAP) A086157 := n -> Sum(ConjugacyClasses(GL(n, 2)), cc->Size(cc) * Order(Representative(cc))); # Eric M. Schmidt, May 18 2013
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 25 2003
Let A(n) be the matrix in the group GL(n,2) such that for 1 <= i, j <= n: A[i,j] = 1 if i+j = n+1 A[i,j] = 0 if i+j != n+1. a(n) is the size of the centralizer of A(n) in GL(n,2).
+10
1
1, 2, 8, 96, 1536, 86016, 5505024, 1321205760, 338228674560, 335522845163520, 343575393447444480, 1385295986380096143360, 5674172360212873803202560, 92239345887620476544860815360, 1511249443022773887710999598858240, 98654363640526679389774053813465907200
COMMENTS
The formula was given by Derek Holt (mareg(AT)mimosa.csv.warwick.ac.uk) in this thread from sci.math: http://mathforum.org/discuss/sci.math/t/538859.
FORMULA
For even n = 2m, a(n) = 2^(m^2) * |GL(m, 2)| = 2^(m^2) * A002884(m).
For odd n = 2m+1, a(n) = 2^(m^2+2m) * |GL(m, 2)| = 2^(m^2+2m) * A002884(m).
MATHEMATICA
a[n_] := With[{m = Quotient[n, 2]}, 2^(2 m^2 + 2 m Boole[OddQ[n]]) * QPochhammer[2^-m, 2, m]];
PROG
(GAP)
a:=function(n) local M;
M:=NullMat(n, n); for i in [1..n] do M[i][n+1-i]:=1; od;
return Size(Centralizer(GL(n, Integers mod 2), M * One(Integers mod 2)));
(PARI) a(n)={my(m=n\2); 2^(m*if(n%2, n+3, n)/2)*prod(i=2, m, 2^i-1)*2^binomial(m, 2)} \\ Andrew Howroyd, Jul 13 2018
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 24 2003
Let A(n) be the matrix in the group GL(n,2) such that for 1<=i, j<=n: A[i,j] = 1 if i+j = n+1 A[i,j] = 0 if i+j != n+1. a(n) is the size of the conjugacy class of A(n) in GL(n,2).
+10
1
1, 3, 21, 210, 6510, 234360, 29763720, 4047865920, 2068459485120, 1092146608143360, 2235624106869457920, 4650098142288472473600, 38088953883484878031257600, 314462403262051153026062745600, 10303989567687630131204997985075200, 338960040818652280796119613717033779200
PROG
(GAP)
a:=function(n) local M;
M:=NullMat(n, n); for i in [1..n] do M[i][n+1-i]:=1; od;
return Size(ConjugacyClass(GL(n, Integers mod 2), M * One(Integers mod 2)));
b(n)={prod(i=2, n, 2^i-1)*2^binomial(n, 2)}
a(n)={my(m=n\2); b(n)/(2^(m*if(n%2, n+3, n)/2)*b(m))} \\ Andrew Howroyd, Jul 13 2018
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 26 2003
Product(6^n - 6^k, k=0..n-1).
+10
1
1, 5, 1050, 8127000, 2273284440000, 22906523331216000000, 8310241106635054164480000000, 108537128570336598656772717772800000000, 51032497739317419104816901041614046625792000000000
FORMULA
a(n) = (6^n - 1)*(6^n - 6)*...*(6^n - 6^(n-1)) for n>0, a(0)=1.
MATHEMATICA
Table[Product[6^n - 6^k, {k, 0, n-1}], {n, 0, 60}]
PROG
(Magma)
[1] cat [&*[(6^n - 6^k): k in [0..n-1]]: n in [1..8]]; // Bruno Berselli, Jan 28 2013
(Magma) /* By the second formula: */
m:=9;
A109354 := [6^(n*(n-1) div 2): n in [0..m-1]];
A027873 := [1] cat [&*[6^i-1: i in [1..n]]: n in [1..m]];
Number of nonsingular n X n matrices over GF(13).
+10
1
1, 12, 26208, 9726417792, 610296923230525440, 6471875909051511775903457280, 11598637276362103019770723830073032376320, 3512938445418644176053176560741858449740612202579886080
MATHEMATICA
Table[Product[13^n - 13^k, {k, 0, n-1}], {n, 0, 8}]
PROG
(Magma) [1] cat [&*[(13^n - 13^k): k in [0..n-1]]: n in [1..8]]
Number of equivalence classes of n X n nonsingular matrices over GF(2), up to row and column permutation.
+10
1
1, 2, 7, 51, 885, 44206, 6843555, 3373513302, 5366987461839, 27936547529976720, 482768359608369460173, 28090323163597327933723100, 5574677486781815353253212392653, 3816761688188495487649082049091445498, 9106495173413853187392282303788066742174903
CROSSREFS
A002884 counts all matrices nonsingular over GF(2).
A116976 counts equivalence classes of binary matrices nonsingular over the reals.
List of orders of finite simple groups which are unit groups of rings.
+10
1
2, 3, 7, 31, 127, 168, 8191, 20160, 131071, 524287, 9999360, 2147483647, 20158709760, 163849992929280, 2305843009213693951, 5348063769211699200, 699612310033197642547200, 618970019642690137449562111, 366440137299948128422802227200, 162259276829213363391578010288127
COMMENTS
The rings are assumed to be unital, but not necessarily commutative, and ring homomorphisms send 1 to 1.
Order of general affine group AGL(n,2) (= A028365(n)) divided by (n+1).
+10
1
1, 1, 8, 336, 64512, 53329920, 184308203520, 2621599886868480, 152122702768688332800, 35820150273699719298416640, 34112245508649716682268134604800, 131089993748184007771243790830298726400, 2029650642403883210241235064170615545004032000
LINKS
Putnam Exam. 1999, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
Search completed in 0.038 seconds
|