[go: up one dir, main page]

login
Search: a002884 -id:a002884
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of n X n rational {0,1}-matrices of determinant 0.
+10
17
1, 10, 338, 42976, 21040112, 39882864736, 292604283435872, 8286284310367538176
OFFSET
1,2
LINKS
J. Bourgain, V. Vu and P. M. Wood, On the Singularity Probability of Discrete Random Matrices, Journal of Functional Analysis, 258 (2010), 559-603.
R. P. Brent and J. H. Osborn, Bounds on minors of binary matrices, arXiv preprint arXiv:1208.3330 [math.CO], 2012.
J. Kahn, J. Komlos and E. Szemeredi, On the probability that a random ±1-matrix is singular, J. AMS 8 (1995), 223-240.
J. Komlos, On the determinant of (0,1)-matrices, Studia Math. Hungarica 2 (1967), 7-21.
N. Metropolis and P. R. Stein, On a class of (0,1) matrices with vanishing determinants, J. Combin. Theory, 3 (1967), 191-198.
Eric Weisstein's World of Mathematics, Singular Matrix.
Miodrag Zivkovic, Classification of small (0,1) matrices, arXiv:math/0511636 [math.CO], 2005.
Miodrag Zivkovic, Classification of small (0,1) matrices, Linear Algebra and its Applications, 414 (2006), 310-346.
FORMULA
a(n) = 2^(n^2) - n! * binomial(2^n -1, n) + n! * A000410(n).
a(n) + A055165(n) = 2^(n^2) = total number of n X n (0, 1) matrices.
The probability that a random n X n {0,1}-matrix is singular is conjectured to be asymptotic to C(n+1, 2)*(1/2)^(n-1). [Corrected by N. J. A. Sloane, Jan 02 2007]
EXAMPLE
a(2)=10: the matrix of all 0's, 4 matrices with 2 zeros in the same row or column, 4 matrices with 3 zeros and the all-1 matrix.
MATHEMATICA
Sum[KroneckerDelta[Det[Array[Mod[Floor[k/(2^(n*(#1-1)+#2-1))], 2]&, {n, n}]], 0], {k, 0, (2^(n^2))-1}] (* John M. Campbell, Jun 24 2011 *)
Count[Det /@ Tuples[{0, 1}, {n, n}], 0] (* David Trimas, Sep 23 2024 *)
PROG
(PARI) A046747(n) = m=matrix(n, n); ct=0; for(x=0, 2^(n*n)-1, a=binary(x+2^(n*n)); for(i=1, n, for(j=1, n, m[i, j]=a[n*i+j+1-n])); if(matdet(m)==0, ct=ct+1, ); ); ct \\ Randall L Rathbun
(PARI) a(n)=sum(i=0, 2^n^2-1, matdet(matrix(n, n, x, y, (i>>(n*x+y-n-1))%2))==0) \\ Charles R Greathouse IV, Feb 21 2015
KEYWORD
hard,nonn,nice
AUTHOR
Günter M. Ziegler (ziegler(AT)math.tu-berlin.de)
EXTENSIONS
a(8) from Vladeta Jovovic, Mar 28 2006
STATUS
approved
Nonsingular n X n matrices over GF(4).
+10
16
1, 3, 180, 181440, 2961100800, 775476766310400, 3251791214634074112000, 218210695042457748180566016000, 234298374547168764346587444978647040000, 4025200069765920285793155323595159699896401920000, 1106437515026051855463365435310419366987397763763798016000000
OFFSET
0,2
LINKS
FORMULA
a(n) = (4^n - 1)*(4^n - 4)*...*(4^n - 4^(n-1)).
a(n) = A053763(n)*A027637(n). - Bruno Berselli, Jan 30 2013
MATHEMATICA
Table[Product[4^n - 4^k, {k, 0, n-1}], {n, 0, 10}] (* Geoffrey Critzer, Jan 26 2013 *)
PROG
(Magma) [1] cat [&*[(4^n - 4^k): k in [0..n-1]]: n in [1..8]]; // Bruno Berselli, Jan 28 2013
(PARI) for(n=0, 10, print1(prod(k=0, n-1, 4^n - 4^k), ", ")) \\ G. C. Greubel, May 31 2018
KEYWORD
nonn,easy
AUTHOR
Stephen G Penrice, Mar 04 2000
EXTENSIONS
More terms from Vladeta Jovovic, Mar 16 2000
STATUS
approved
Number of bases of an n-dimensional vector space over GF(2).
+10
15
1, 1, 3, 28, 840, 83328, 27998208, 32509919232, 132640470466560, 1927943976061501440, 100981078400558897823744, 19242660536873338307044442112, 13448310596010038676027219703234560, 34707333779115158227208335860718444216320, 332718225878012276874300952228513073208156487680
OFFSET
0,3
REFERENCES
R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge 1986
LINKS
Claude Carlet, Philippe Gaborit, Jon-Lark Kim and Patrick Sole, A new class of codes for Boolean masking of cryptographic computations, arXiv:1110.1193 [cs.IT], 2011-2012.
David Ellerman, The number of direct-sum decompositions of a finite vector space, arXiv:1603.07619 [math.CO], 2016.
David Ellerman, The Quantum Logic of Direct-Sum Decompositions, arXiv:1604.01087 [quant-ph], 2016.
FORMULA
a(n) = (2^n-1)(2^n-2)...(2^n-2^(n-1))/n! = A002884(n)/n!.
EXAMPLE
a(2)=3 because the 3 bases are {01,10}, {01,11}, {10,11}.
MATHEMATICA
Table[Product[2^n - 2^k, {k, 0, n-1}]/n!, {n, 0, 20}] (* G. C. Greubel, May 16 2019 *)
PROG
(PARI) a(n) = prod(k=0, n-1, 2^n - 2^k)/n!; \\ Michel Marcus, Mar 25 2016
(Magma) [1] cat [(&*[2^n -2^k: k in [0..n-1]])/Factorial(n): n in [1..20]]; // G. C. Greubel, May 16 2019
(Sage) [product(2^n -2^k for k in (0..n-1))/factorial(n) for n in (0..20)] # G. C. Greubel, May 16 2019
CROSSREFS
Cf. A002884.
KEYWORD
easy,nonn
AUTHOR
Fred Galvin (galvin(AT)math.ukans.edu), Jan 20 2000
EXTENSIONS
More terms from Vladeta Jovovic, Apr 05 2000
STATUS
approved
Number of nonsingular n X n matrices over GF(5).
+10
14
1, 4, 480, 1488000, 116064000000, 226614960000000000, 11064475422000000000000000, 13506266841692625000000000000000000, 412177498341354683437500000000000000000000000
OFFSET
0,2
LINKS
J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher.
FORMULA
a(n) = (5^n - 1)*(5^n - 5)*...*(5^n - 5^(n-1)).
a(n) = A109345(n)*A027872(n). - Bruno Berselli, Jan 30 2013
MATHEMATICA
Table[Product[5^n - 5^k, {k, 0, n-1}], {n, 0, 10}] (* Geoffrey Critzer, Jan 26 2013 *)
PROG
(Magma) [1] cat [&*[(5^n - 5^k): k in [0..n-1]]: n in [1..8]]; // Bruno Berselli, Jan 28 2013
(PARI) for(n=0, 10, print1(prod(k=0, n-1, 5^n - 5^k), ", ")) \\ G. C. Greubel, May 31 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stephen G Penrice, Mar 04 2000
EXTENSIONS
More terms from Vladeta Jovovic, Mar 16 2000
STATUS
approved
Number of nonsingular n X n matrices over GF(7).
+10
14
1, 6, 2016, 33784128, 27811094169600, 1122211189922928537600, 2218959336124989671614429593600, 214992513152176999576908105619651923148800, 1020690003311610463765638355505358381593396977336320000, 237443634207909205360438080389756681126654524500073656592021585920000
OFFSET
0,2
LINKS
J. Overbey, W. Traves and J. Wojdylo, On the Keyspace of the Hill Cipher.
FORMULA
a(n) = (7^n - 1)*(7^n - 7)*...*(7^n - 7^(n-1)).
a(n) = A109493(n)*A027875(n). - Bruno Berselli, Jan 30 2013
MATHEMATICA
Table[Product[7^n - 7^k, {k, 0, n-1}], {n, 0, 10}] (* Vincenzo Librandi, Jan 28 2013 *)
PROG
(Magma) [1] cat [&*[(7^n - 7^k): k in [0..n-1]]: n in [1..7]]; // Bruno Berselli, Jan 28 2013
(PARI) for(n=0, 10, print1(prod(k=0, n-1, 7^n - 7^k), ", ")) \\ G. C. Greubel, May 31 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stephen G Penrice, Mar 04 2000
EXTENSIONS
More terms from Vladeta Jovovic, Mar 16 2000
STATUS
approved
Number of idempotent n X n matrices over GF(2); also number of diagonalizable n X n matrices over GF(2).
+10
12
1, 2, 8, 58, 802, 20834, 1051586, 102233986, 19614424834, 7355623374338, 5494866505497602, 8087844439442585602, 23834930674299549249538, 138978138716920276085366786, 1626809921636911219317749563394, 37757678575184051755732304668884994
OFFSET
0,2
LINKS
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
a(n) = sum(k=0...n, 2^(k(n-k))*[n,k]_2), where [n,k]_2 is the Gaussian binomial for q=2. - Marc van Leeuwen, May 22 2013
a(n)/A002884(n) is the coefficient of x^n in (Sum_{n>=0} x^n/A002884(n))^2. - Geoffrey Critzer, Aug 04 2017
MAPLE
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, T(n-1, k-1)+2^k*T(n-1, k)))
end:
a:= n-> add(2^(k*(n-k))*T(n, k), k=0...n):
seq(a(n), n=0..20); # Alois P. Heinz, Aug 06 2017
MATHEMATICA
nn = 10; g[n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[
QFactorial[n, q]] /. q -> 2; G[z_] := Sum[z^k/g[k], {k, 0, nn}]; Table[g[n], {n, 0, nn}] CoefficientList[Series[G[z]^2, {z, 0, nn}], z] (* Geoffrey Critzer, Aug 04 2017 *)
a[n_] := Block[{m}, Length@ Select[ Range[2^(n^2)], (m = Partition[ IntegerDigits[ #-1, 2, n^2], n]; Mod[m.m, 2] == m) &]]; a /@ Range[4] (* Giovanni Resta, Apr 09 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 19 2003 and Vladeta Jovovic, Nov 04 2007
EXTENSIONS
This is the result of merging two independently submitted but identical sequences. Thanks to Geoffrey Critzer for suggesting this. - N. J. A. Sloane, Dec 26 2017
STATUS
approved
Number of n X n invertible binary matrices A such that A+I is invertible.
(Formerly M2170 N0866)
+10
11
0, 2, 48, 5824, 2887680, 5821595648, 47317927329792, 1544457148312846336, 202039706313624586813440, 105823549214125066767168438272, 221819704567105547916502447159246848
OFFSET
1,2
COMMENTS
Also number of linear orthomorphisms of GF(2)^n.
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Zong Duo Dai, Solomon W. Golomb, and Guang Gong, Generating all linear orthomorphisms without repetition, Discrete Math. 205 (1999), 47-55.
P. F. Duvall, Jr. and P. W. Harley, III, A note on counting matrices, SIAM J. Appl. Math., 20 (1971), 374-377.
Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
Reference gives a recurrence.
a(n) = 2^(n(n-1)/2) * A005327(n+1).
MAPLE
(Maple program based on Dai et al. from N. J. A. Sloane, Aug 10 2011)
N:=proc(n, i) option remember; if i = 1 then 1 else (2^n-2^(i-1))*N(n, i-1); fi; end;
Oh:=proc(n) option remember; local r; global N;
if n=0 then RETURN(1) elif n=1 then RETURN(0) else
add( 2^(r-2)*N(n, r)*2^(r*(n-r))*Oh(n-r), r=2..n); fi; end;
[seq(Oh(n), n=1..15)];
MATHEMATICA
ni[n_, i_] := ni[n, i] = If[i == 1, 1, (2^n - 2^(i-1))*ni[n, i-1]]; a[0] = 1; a[1] = 0; a[n_] := a[n] = Sum[ 2^(r-2)*ni[n, r]*2^(r*(n-r))*a[n-r], {r, 2, n}]; Table[a[n], {n, 1, 11}] (* Jean-François Alcover, Jan 19 2012, after Maple *)
CROSSREFS
Cf. A002884.
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms from Vladeta Jovovic, Mar 17 2000
Entry revised by N. J. A. Sloane, Aug 10 2011
STATUS
approved
Array read by antidiagonals: T(n,k) is the order of the group GL(n,Z_k).
+10
11
1, 1, 1, 1, 1, 1, 1, 2, 6, 1, 1, 2, 48, 168, 1, 1, 4, 96, 11232, 20160, 1, 1, 2, 480, 86016, 24261120, 9999360, 1, 1, 6, 288, 1488000, 1321205760, 475566474240, 20158709760, 1, 1, 4, 2016, 1886976, 116064000000, 335522845163520, 84129611558952960, 163849992929280, 1
OFFSET
0,8
COMMENTS
All rows are multiplicative.
Equivalently, the number of invertible n X n matrices mod k.
Also, for k prime (but not higher prime powers) the number of nonsingular n X n matrices over GF(k).
For k >= 2, n! divides T(n,k) since the subgroup of GL(n,k) consisting of all permutation matrices is isomorphic to S_n (the n-th symmetric group). Note that a permutation matrix is an orthogonal matrix, hence having determinant +-1. - Jianing Song, Oct 29 2022
LINKS
R. P. Brent and B. D. McKay, Determinants and ranks of random matrices over Zm, Discrete Mathematics 66 (1987) pp. 35-49.
J. M. Lockhart and W. P. Wardlaw, Determinants of Matrices over the Integers Modulo m, Mathematics Magazine, Vol. 80, No. 3 (Jun., 2007), pp. 207-214.
The Group Properties Wiki, Order formulas for linear groups
FORMULA
T(n,p^e) = (p^e)^(n^2) * Product_{j=1..n} (1 - 1/p^j) for prime p.
EXAMPLE
Array begins:
=================================================================
n\k| 1 2 3 4 5 6
---+-------------------------------------------------------------
0 | 1 1 1 1 1 1 ...
1 | 1 1 2 2 4 2 ...
2 | 1 6 48 96 480 288 ...
3 | 1 168 11232 86016 1488000 1886976 ...
4 | 1 20160 24261120 1321205760 116064000000 489104179200 ...
5 | 1 9999360 ...
...
MATHEMATICA
T[_, 1] = T[0, _] = 1; T[n_, k_] := T[n, k] = Module[{f = FactorInteger[k], p, e}, If[Length[f] == 1, {p, e} = f[[1]]; (p^e)^(n^2)* Product[(1 - 1/p^j), {j, 1, n}], Times @@ (T[n, Power @@ #]& /@ f)]];
Table[T[n - k + 1, k], {n, 0, 8}, {k, n + 1, 1, -1}] // Flatten (* Jean-François Alcover, Jul 25 2019 *)
PROG
(GAP)
T:=function(n, k) if k=1 or n=0 then return 1; else return Order(GL(n, Integers mod k)); fi; end;
for n in [0..5] do Print(List([1..6], k->T(n, k)), "\n"); od;
(PARI) T(n, k)={my(f=factor(k)); k^(n^2) * prod(i=1, #f~, my(p=f[i, 1]); prod(j=1, n, (1 - p^(-j))))}
CROSSREFS
Rows n=2..4 are A000252, A064767, A305186.
Columns k=2..7 are A002884, A053290, A065128, A053292, A065498, A053293.
Cf. A053291 (GF(4)), A052496 (GF(8)), A052497 (GF(9)).
Cf. A316623.
KEYWORD
nonn,mult,tabl
AUTHOR
Andrew Howroyd, Jul 08 2018
STATUS
approved
Order of general affine group over GF(2), AGL(n,2).
+10
9
1, 2, 24, 1344, 322560, 319979520, 1290157424640, 20972799094947840, 1369104324918194995200, 358201502736997192984166400, 375234700595146883504949480652800, 1573079924978208093254925489963584716800
OFFSET
0,2
COMMENTS
For n > 0, a(n) = v(n+1)/v(n), where v = A203305 is the Vandermonde determinant of the first n of the numbers -2^j - 1; see the Mathematica section. - Clark Kimberling, Jan 01 2012
REFERENCES
J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 54 (1.64).
LINKS
Marcus Brinkmann, Extended Affine and CCZ Equivalence up to Dimension 4, Ruhr University Bochum (2019).
Putnam Competition 1999, Question A6, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
FORMULA
a(n) is asymptotic to C*2^(n*(n+1)) where C = 0.288788095086602421278899721... = prod(k>=1, 1-1/2^k) (cf. A048651). - Benoit Cloitre, Apr 11 2003
a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)). [From Putman Exam]. - Max Alekseyev, May 18 2007
a(n) = 2*A203305(n), n > 0. - Clark Kimberling, Jan 01 2012
From Max Alekseyev, Jun 09 2015: (Start)
a(n) = 2^A000217(n) * A005329(n).
a(n) = 2^n * A002884(n).
a(n) = 2^n * n! * A053601(n). (End)
From G. C. Greubel, Aug 31 2023: (Start)
a(n) = Product_{j=0..n-1} (2^(n+1) - 2^(j+1)).
a(n) = (-1)^n * 2^binomial(n+1,2) * QPochhammer(2,2,n). (End)
MAPLE
A028365 := n->2^n*product(2^n-2^'i', 'i'=0..n-1); # version 1
A028365 := n->product(2^'j'-1, 'j'=1..n)*2^binomial(n+1, 2); # version 2
MATHEMATICA
RecurrenceTable[{a[1]==1, a[2]==2, a[3]==24, a[n]==(6a[n-1]^2 a[n-3] - 8a[n-1] a[n-2]^2)/(a[n-2] a[n-3])}, a[n], {n, 20}] (* Harvey P. Dale, Aug 03 2011 *)
(* Next, the connection with Vandermonde determinants *)
f[j_]:= 2^j - 1; z = 15;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
Table[v[n], {n, z}] (* A203303 *)
Table[v[n+1]/v[n], {n, z}] (* A028365 *)
Table[v[n]*v[n+2]/(2*v[n+1])^2, {n, z}] (* A171499 *) (* Clark Kimberling, Jan 01 2011 *)
Table[(-1)^n*2^Binomial[n+1, 2]*QPochhammer[2, 2, n], {n, 0, 20}] (* G. C. Greubel, Aug 31 2023 *)
PROG
(PARI) a(n)=if(n<0, 0, prod(k=1, n, 2^k-1)*2^((n^2+n)/2)) /* Michael Somos, May 09 2005 */
(Magma) [1] cat [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]]): n in [1..20]]; // G. C. Greubel, Aug 31 2023
(SageMath) [product(2^(n+1) - 2^(k+1) for k in range(n)) for n in range(21)] # G. C. Greubel, Aug 31 2023
KEYWORD
nonn,easy,nice
STATUS
approved
a(n) = 6*a(n-1) - 8*a(n-2) for n > 1; a(0) = 3, a(1) = 14.
+10
9
3, 14, 60, 248, 1008, 4064, 16320, 65408, 261888, 1048064, 4193280, 16775168, 67104768, 268427264, 1073725440, 4294934528, 17179803648, 68719345664, 274877644800, 1099511103488, 4398045462528, 17592183947264, 70368739983360
OFFSET
0,1
COMMENTS
Binomial transform of A171498; second binomial transform of A171497; third binomial transform of A010703.
Related to sequences A001969 and A000069, sum of each group with exponent 1. - Eric Desbiaux, Jul 24 2013
a(n) in base 2 is n+2 1s followed by n 0s. - Hussam al-Homsi, Oct 12 2021
FORMULA
a(n) = 4*4^n - 2^n = 2^n * (2^(n+2) - 1).
G.f.: (3-4*x)/((1-2*x)*(1-4*x)).
a(n) = 4*a(n-1) + 2^n for n > 0. - Vincenzo Librandi, Jul 18 2011
a(n) = A171476(n+1)/2. - Hussam al-Homsi, Jun 06 2021
E.g.f.: 4*exp(4*x) - exp(2*x). - G. C. Greubel, Aug 31 2023
MATHEMATICA
(* This program shows how A171499 arises from the Vandermonde determinant of (1, 2, 4, ..., 2^(n-1)). *)
f[j_]:= 2^j - 1; z = 15;
v[n_]:= Product[Product[f[k] - f[j], {j, k-1}], {k, 2, n}]
d[n_]:= Product[(i-1)!, {i, n}]
Table[v[n], {n, z}] (* A203303 *)
Table[v[n+1]/v[n], {n, z}] (* A002884 *)
Table[v[n]*v[n+2]/(2*v[n+1])^2, {n, z}] (* A171499 *)
(* Clark Kimberling, Jan 02 2011 *)
LinearRecurrence[{6, -8}, {3, 14}, 30] (* Harvey P. Dale, Sep 05 2021 *)
PROG
(PARI) {m=23; v=concat([3, 14], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]); v}
(Magma) [4*4^n-2^n: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
(SageMath) [4^(n+1) -2^n for n in range(31)] # G. C. Greubel, Aug 31 2023
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Dec 10 2009
STATUS
approved

Search completed in 0.039 seconds