Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #53 Aug 31 2023 12:15:22
%S 1,2,24,1344,322560,319979520,1290157424640,20972799094947840,
%T 1369104324918194995200,358201502736997192984166400,
%U 375234700595146883504949480652800,1573079924978208093254925489963584716800
%N Order of general affine group over GF(2), AGL(n,2).
%C For n > 0, a(n) = v(n+1)/v(n), where v = A203305 is the Vandermonde determinant of the first n of the numbers -2^j - 1; see the Mathematica section. - _Clark Kimberling_, Jan 01 2012
%D J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 54 (1.64).
%H Seiichi Manyama, <a href="/A028365/b028365.txt">Table of n, a(n) for n = 0..57</a>
%H Marcus Brinkmann, <a href="https://www.researchgate.net/publication/332564840_Extended_Affine_and_CCZ_Equivalence_Classes_up_to_Dimension_4">Extended Affine and CCZ Equivalence up to Dimension 4</a>, Ruhr University Bochum (2019).
%H Putnam Competition 1999, <a href="http://math.ucsd.edu/~pfitz/downloads/putnam/putnam1999.pdf">Question A6</a>, Amer. Math. Monthly 107 (Oct 2000), 721-732; see p. 725.
%H I. Strazdins, <a href="https://doi.org/10.1023/A:1005769927571">Universal affine classification of Boolean functions</a>, Acta Applic. Math. 46 (1997), 147-167.
%F a(n) is asymptotic to C*2^(n*(n+1)) where C = 0.288788095086602421278899721... = prod(k>=1, 1-1/2^k) (cf. A048651). - _Benoit Cloitre_, Apr 11 2003
%F a(n) = (6*a(n-1)^2*a(n-3) - 8*a(n-1)*a(n-2)^2) / (a(n-2)*a(n-3)). [From Putman Exam]. - _Max Alekseyev_, May 18 2007
%F a(n) = 2*A203305(n), n > 0. - _Clark Kimberling_, Jan 01 2012
%F From _Max Alekseyev_, Jun 09 2015: (Start)
%F a(n) = 2^A000217(n) * A005329(n).
%F a(n) = 2^n * A002884(n).
%F a(n) = 2^n * n! * A053601(n). (End)
%F From _G. C. Greubel_, Aug 31 2023: (Start)
%F a(n) = Product_{j=0..n-1} (2^(n+1) - 2^(j+1)).
%F a(n) = (-1)^n * 2^binomial(n+1,2) * QPochhammer(2,2,n). (End)
%p A028365 := n->2^n*product(2^n-2^'i','i'=0..n-1); # version 1
%p A028365 := n->product(2^'j'-1,'j'=1..n)*2^binomial(n+1,2); # version 2
%t RecurrenceTable[{a[1]==1, a[2]==2, a[3]==24, a[n]==(6a[n-1]^2 a[n-3] - 8a[n-1] a[n-2]^2)/(a[n-2] a[n-3])}, a[n], {n,20}] (* _Harvey P. Dale_, Aug 03 2011 *)
%t (* Next, the connection with Vandermonde determinants *)
%t f[j_]:= 2^j - 1; z = 15;
%t v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
%t Table[v[n], {n,z}] (* A203303 *)
%t Table[v[n+1]/v[n], {n,z}] (* A028365 *)
%t Table[v[n]*v[n+2]/(2*v[n+1])^2, {n,z}] (* A171499 *) (* _Clark Kimberling_, Jan 01 2011 *)
%t Table[(-1)^n*2^Binomial[n+1,2]*QPochhammer[2,2,n], {n,0,20}] (* _G. C. Greubel_, Aug 31 2023 *)
%o (PARI) a(n)=if(n<0,0,prod(k=1,n,2^k-1)*2^((n^2+n)/2)) /* _Michael Somos_, May 09 2005 */
%o (Magma) [1] cat [(&*[2^(n+1) - 2^(j+1): j in [0..n-1]]): n in [1..20]]; // _G. C. Greubel_, Aug 31 2023
%o (SageMath) [product(2^(n+1) - 2^(k+1) for k in range(n)) for n in range(21)] # _G. C. Greubel_, Aug 31 2023
%Y Cf. A000217, A002884, A005329, A020522, A048651, A053601, A203305.
%K nonn,easy,nice
%O 0,2
%A _N. J. A. Sloane_