# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a160414
Showing 1-1 of 1
%I A160414 #68 Sep 01 2023 08:17:48
%S A160414 0,1,9,21,49,61,97,133,225,237,273,309,417,453,561,669,961,973,1009,
%T A160414 1045,1153,1189,1297,1405,1729,1765,1873,1981,2305,2413,2737,3061,
%U A160414 3969,3981,4017,4053,4161,4197,4305,4413,4737,4773,4881,4989,5313,5421,5745
%N A160414 Number of "ON" cells at n-th stage in simple 2-dimensional cellular automaton (same as A160410, but a(1) = 1, not 4).
%C A160414 The structure has a fractal behavior similar to the toothpick sequence A139250.
%C A160414 First differences: A161415, where there is an explicit formula for the n-th term.
%C A160414 For the illustration of a(24) = 1729 (the Hardy-Ramanujan number) see the Links section.
%H A160414 Paolo Xausa, Table of n, a(n) for n = 0..10000
%H A160414 David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
%H A160414 Omar E. Pol, Illustration of initial terms
%H A160414 Omar E. Pol, Illustration of the structure after 24th stage (contains 1729 ON cells)
%H A160414 N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
%H A160414 Index entries for sequences related to cellular automata
%F A160414 a(n) = 1 + 4*A219954(n), n >= 1. - _M. F. Hasler_, Dec 02 2012
%F A160414 a(2^k) = (2^(k+1) - 1)^2. - _Omar E. Pol_, Jan 05 2013
%e A160414 From _Omar E. Pol_, Sep 24 2015: (Start)
%e A160414 With the positive terms written as an irregular triangle in which the row lengths are the terms of A011782 the sequence begins:
%e A160414 1;
%e A160414 9;
%e A160414 21, 49;
%e A160414 61, 97, 133, 225;
%e A160414 237, 273, 309, 417, 453, 561, 669, 961;
%e A160414 ...
%e A160414 Right border gives A060867.
%e A160414 This triangle T(n,k) shares with the triangle A256530 the terms of the column k, if k is a power of 2, for example both triangles share the following terms: 1, 9, 21, 49, 61, 97, 225, 237, 273, 417, 961, etc.
%e A160414 .
%e A160414 Illustration of initial terms, for n = 1..10:
%e A160414 . _ _ _ _ _ _ _ _
%e A160414 . | _ _ | | _ _ |
%e A160414 . | | _|_|_ _ _ _ _ _ _ _ _ _ _|_|_ | |
%e A160414 . | |_| _ _ _ _ _ _ _ _ |_| |
%e A160414 . |_ _| | _|_ _|_ | | _|_ _|_ | |_ _|
%e A160414 . | |_| _ _ |_| |_| _ _ |_| |
%e A160414 . | | | _|_|_ _ _|_|_ | | |
%e A160414 . | _| |_| _ _ _ _ |_| |_ |
%e A160414 . | | |_ _| | _|_|_ | |_ _| | |
%e A160414 . | |_ _| | |_| _ |_| | |_ _| |
%e A160414 . | _ _ | _| |_| |_ | _ _ |
%e A160414 . | | _|_| | |_ _ _| | |_|_ | |
%e A160414 . | |_| _| |_ _| |_ _| |_ |_| |
%e A160414 . | | | |_ _ _ _ _ _ _| | | |
%e A160414 . | _| |_ _| |_ _| |_ _| |_ |
%e A160414 . _ _| | |_ _ _ _| | | |_ _ _ _| | |_ _
%e A160414 . | _| |_ _| |_ _| |_ _| |_ _| |_ |
%e A160414 . | | |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| | |
%e A160414 . | |_ _| | | |_ _| |
%e A160414 . |_ _ _ _| |_ _ _ _|
%e A160414 .
%e A160414 After 10 generations there are 273 ON cells, so a(10) = 273.
%e A160414 (End)
%p A160414 read("transforms") ; isA000079 := proc(n) if type(n,'even') then nops(numtheory[factorset](n)) = 1 ; else false ; fi ; end proc:
%p A160414 A048883 := proc(n) 3^wt(n) ; end proc:
%p A160414 A161415 := proc(n) if n = 1 then 1; elif isA000079(n) then 4*A048883(n-1)-2*n ; else 4*A048883(n-1) ; end if; end proc:
%p A160414 A160414 := proc(n) add( A161415(k),k=1..n) ; end proc: seq(A160414(n),n=0..90) ; # _R. J. Mathar_, Oct 16 2010
%t A160414 A160414list[nmax_]:=Accumulate[Table[If[n<2,n,4*3^DigitCount[n-1,2,1]-If[IntegerQ[Log2[n]],2n,0]],{n,0,nmax}]];A160414list[100] (* _Paolo Xausa_, Sep 01 2023, after _R. J. Mathar_ *)
%o A160414 (PARI) my(s=-1, t(n)=3^norml2(binary(n-1))-if(n==(1<