[go: up one dir, main page]

login
Search: a007070 -id:a007070
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of (7-14*x+6*x^2)/((1-x)*(2*x^2-4*x+1)); related to the binomial transform of Pell numbers A000129 (see formula and comment for A007070).
+20
0
7, 21, 69, 233, 793, 2705, 9233, 31521, 107617, 367425, 1254465, 4283009, 14623105, 49926401, 170459393, 581984769, 1987020289, 6784111617, 23162405889, 79081400321, 270000789505, 921840357377, 3147359850497, 10745758687233
OFFSET
0,1
COMMENTS
If g.f. (x^6+5*x^4+6*x^2+1)/(x^7+6*x^5+10*x^3+4*x) is expanded, where (x^6+5*x^4+6*x^2+1) and (x^7+6*x^5+10*x^3+4*x) are the 7th and 8th Fibonacci polynomials, respectively, the sequence: [0, 7/8, 0, -21/16, 0, 69/32, 0, -233/64, 0, 793/128, 0, -2705/256, ] is returned. (a(n)) is seen to be the numerators of the bisection of this sequences, apart from signs.
FORMULA
a(n+1) - a(n) = A007070(n+2), a(n) - 2*a(n+1) + a(n+2) = A007052(n+3) (Number of order consecutive partitions of n), a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n) = A003480(n+4), a(n+2) - a(n) = A111567(n+3)
MAPLE
with(combinat, fibonacci): seq(fibonacci(i, x), i=1..15); [[generates sequence of Fibonacci polynomials]]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Creighton Dement, Jan 25 2006
STATUS
approved
Number of order-consecutive partitions of n.
(Formerly M2847)
+10
89
1, 3, 10, 34, 116, 396, 1352, 4616, 15760, 53808, 183712, 627232, 2141504, 7311552, 24963200, 85229696, 290992384, 993510144, 3392055808, 11581202944, 39540700160, 135000394752, 460920178688, 1573679925248
OFFSET
0,2
COMMENTS
After initial terms, first differs from A291292 at a(6) = 1352, A291292(8) = 1353.
Joe Keane (jgk(AT)jgk.org) observes that this sequence (beginning at 3) is "size of raises in pot-limit poker, one blind, maximum raising".
It appears that this sequence is the BinomialMean transform of A001653 (see A075271). - John W. Layman, Oct 03 2002
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 3, s(2n+1) = 4. - Herbert Kociemba, Jun 12 2004
Equals the INVERT transform of (1, 2, 5, 13, 34, 89, ...). - Gary W. Adamson, May 01 2009
a(n) is the number of compositions of n when there are 3 types of ones. - Milan Janjic, Aug 13 2010
a(n)/a(n-1) tends to (4 + sqrt(8))/2 = 3.414213.... Gary W. Adamson, Jul 30 2013
a(n) is the first subdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Number of words of length n over {0,1,2,3,4} in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
From Gus Wiseman, Mar 05 2020: (Start)
Also the number of unimodal sequences of length n + 1 covering an initial interval of positive integers, where a sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. For example, the a(0) = 1 through a(2) = 10 sequences are:
(1) (1,1) (1,1,1)
(1,2) (1,1,2)
(2,1) (1,2,1)
(1,2,2)
(1,2,3)
(1,3,2)
(2,1,1)
(2,2,1)
(2,3,1)
(3,2,1)
Missing are: (2,1,2), (2,1,3), (3,1,2).
Conjecture: Also the number of ordered set partitions of {1..n + 1} where no element of any block is greater than any element of a non-adjacent consecutive block. For example, the a(0) = 1 through a(2) = 10 ordered set partitions are:
{{1}} {{1,2}} {{1,2,3}}
{{1},{2}} {{1},{2,3}}
{{2},{1}} {{1,2},{3}}
{{1,3},{2}}
{{2},{1,3}}
{{2,3},{1}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
a(n-1) is the number of hexagonal directed-column convex polyominoes having area n (see Baril et al. at page 4). - Stefano Spezia, Oct 14 2023
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences , J. Int. Seq. 13 (2010) # 10.9.7, proposition 16.
Jean-Luc Baril, José L. Ramírez, and Fabio A. Velandia, Bijections between Directed-Column Convex Polyominoes and Restricted Compositions, September 29, 2023.
Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, Involve, Vol. 8 (2015), No. 1, 25-32.
Pamela Fleischmann, Jonas Höfer, Annika Huch, and Dirk Nowotka, alpha-beta-Factorization and the Binary Case of Simon's Congruence, arXiv:2306.14192 [math.CO], 2023.
Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, Preprint. (Annotated scanned copy)
F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
N. J. A. Sloane, Transforms
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
FORMULA
a(n+1) = 4a(n) - 2a(n-1).
G.f.: (1-x)/(1-4x+2x^2).
Binomial transform of Pell numbers 1, 2, 5, 12, ... (A000129).
a(n) = A006012(n+1)/2 = A056236(n+1)/4. - Michael Somos, Mar 06 2003
a(n) = (A035344(n)+1)/2; a(n) = (2+sqrt(2))^n(1/2+sqrt(2)/4)+(2-sqrt(2))^n(1/2-sqrt(2)/4). - Paul Barry, Jul 16 2003
Second binomial transform of (1, 1, 2, 2, 4, 4, ...). a(n) = Sum_{k=1..floor(n/2)}, C(n, 2k)*2^(n-k-1). - Paul Barry, Nov 22 2003
a(n) = ( (2-sqrt(2))^(n+1) + (2+sqrt(2))^(n+1) )/4. - Herbert Kociemba, Jun 12 2004
a(n) = both left and right terms in M^n * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 1 2 1 / 1 1 1]. M^n * [1 1 1] = [a(n) A007070(n) a(n)]. E.g., a(3) = 34. M^3 * [1 1 1] = [34 48 34] (center term is A007070(3)). - Gary W. Adamson, Dec 18 2004
The i-th term of the sequence is the entry (2, 2) in the i-th power of the 2 X 2 matrix M = ((1, 1), (1, 3)). - Simone Severini, Oct 15 2005
E.g.f. : exp(2x)(cosh(sqrt(2x)+sinh(sqrt(2)x)/sqrt(2). - Paul Barry, Nov 20 2003
a(n) = A007068(2*n), n>0. - R. J. Mathar, Aug 17 2009
If p[i]=Fibonacci(2i-1) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n-1) = Sum_{k=-floor(n/4)..floor(n/4)} (-1)^k*binomial(2*n,n+4*k)/2. - Mircea Merca, Jan 28 2012
G.f.: G(0)*(1-x)/(2*x) + 1 - 1/x, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - (1-x)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = 3*a(n-1) + a(n-2) + a(n-3) + a(n-4) + ... + a(0). - Gary W. Adamson, Aug 12 2013
a(n) = a(-2-n) * 2^(n+1) for all n in Z. - Michael Somos, Jan 25 2017
EXAMPLE
G.f. = 1 + 3*x + 10*x^2 + 34*x^3 + 116*x^4 + 396*x^5 + 1352*x^6 + 4616*x^7 + ...
MATHEMATICA
a[n_]:=(MatrixPower[{{3, 1}, {1, 1}}, n].{{2}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
a[ n_] := ((2 + Sqrt[2])^(n + 1) + (2 - Sqrt[2])^(n + 1)) / 4 // Simplify; (* Michael Somos, Jan 25 2017 *)
LinearRecurrence[{4, -2}, {1, 3}, 24] (* Jean-François Alcover, Jan 07 2019 *)
unimodQ[q_]:=Or[Length[q]<=1, If[q[[1]]<=q[[2]], unimodQ[Rest[q]], OrderedQ[Reverse[q]]]];
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Union@@Permutations/@allnorm[n], unimodQ]], {n, 6}] (* Gus Wiseman, Mar 06 2020 *)
PROG
(PARI) {a(n) = real((2 + quadgen(8))^(n+1)) / 2}; /* Michael Somos, Mar 06 2003 */
(Magma) [Floor((2+Sqrt(2))^n*(1/2+Sqrt(2)/4)+(2-Sqrt(2))^n*(1/2-Sqrt(2)/4)): n in [0..30] ] ; // Vincenzo Librandi, Aug 20 2011
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(0) = 1, a(1) = 2, a(n) = 4*a(n-1) - 2*a(n-2), n >= 2.
(Formerly M1644)
+10
52
1, 2, 6, 20, 68, 232, 792, 2704, 9232, 31520, 107616, 367424, 1254464, 4283008, 14623104, 49926400, 170459392, 581984768, 1987020288, 6784111616, 23162405888, 79081400320, 270000789504, 921840357376, 3147359850496
OFFSET
0,2
COMMENTS
a(n)/a(n-1) approaches 2 + sqrt(2). - Zak Seidov, Oct 12 2002
Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 4, s(2n) = 4. - Herbert Kociemba, Jun 12 2004
a(k) = [M^k]_{2,2}, where M is the following 3 X 3 matrix: M = [1,1,1;1,2,1;1,1,1]. - Simone Severini, Jun 11 2006
a(n-1) counts permutations pi on [n] for which the pairs {i, pi(i)} with i < pi(i), considered as closed intervals [i+1,pi(i)], do not overlap; equivalently, for each i in [n] there is at most one j <= i with pi(j) > i. Counting these permutations by the position of n yields the recurrence relation. - David Callan, Sep 02 2003
a(n) is the sum of (n+1)-th row terms of triangle A140070. - Gary W. Adamson, May 04 2008
The binomial transform is in A083878, the Catalan transform in A084868. - R. J. Mathar, Nov 23 2008
Equals row sums of triangle A152252. - Gary W. Adamson, Nov 30 2008
Counts all paths of length (2*n), n >= 0, starting at the initial node on the path graph P_7, see the second Maple program. - Johannes W. Meijer, May 29 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U_1 and U_3 be the unit-primitive matrices (see [Jeffery])
U_1 = U_(8,1) = [(0,1,0,0); (1,0,1,0); (0,1,0,1); (0,0,2,0)] and
U_3 = U_(8,3) = [(0,0,0,1); (0,0,2,0); (0,2,0,1); (2,0,2,0)]. Then A006012(n) = (1/4) * Trace(U_1^(2*n)) = (1/2^(n+2)) * Trace(U_3^(2*n)). (See also A084130, A001333.) (End)
Pisano period lengths: 1, 1, 8, 1, 24, 8, 6, 1, 24, 24, 120, 8, 168, 6, 24, 1, 8, 24, 360, 24, ... - R. J. Mathar, Aug 10 2012
a(n) is the first superdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Conjecture: With offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). For example, the 4 permutations of [4] not counted by a(4) are 1324, 1423, 2314, 2413. - David Callan, Aug 27 2014
The conjecture of David Callan above is correct - with offset 1, a(n) is the number of permutations on [n] with no subsequence abcd such that (i) bc are adjacent in position and (ii) max(a,c) < min(b,d). - Yonah Biers-Ariel, Jun 27 2017
From Gary W. Adamson, Jul 22 2016: (Start)
A production matrix for the sequence is M =
1, 1, 0, 0, 0, 0, ...
1, 0, 3, 0, 0, 0, ...
1, 0, 0, 3, 0, 0, ...
1, 0, 0, 0, 3, 0, ...
1, 0, 0, 0, 0, 3, ...
...
Take powers of M, extracting the upper left terms; getting the sequence starting: (1, 1, 2, 6, 20, 68, ...).
(End)
From Gary W. Adamson, Jul 24 2016: (Start)
The sequence is the INVERT transform of the powers of 3 prefaced with a "1": (1, 1, 3, 9, 27, ...) and is N=3 in an infinite of analogous sequences starting:
N=1 (A000079): 1, 2, 4, 8, 16, 32, ...
N-2 (A001519): 1, 2, 5, 13, 34, 89, ...
N=3 (A006012): 1, 2, 6, 20, 68, 232, ...
N=4 (A052961): 1, 2, 7, 29, 124, 533, ...
N=5 (A154626): 1, 2, 8, 40, 208, 1088, ...
N=6: 1, 2, 9, 53, 326, 2017, ...
...
(End)
Number of permutations of length n > 0 avoiding the partially ordered pattern (POP) {1>2, 1>3, 4>2, 4>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first and fourth elements are larger than the second and third elements. - Sergey Kitaev, Dec 08 2020
a(n-1) is the number of permutations of [n] that can be obtained by placing n points on an X-shape (two crossing lines with slopes 1 and -1), labeling them 1,2,...,n by increasing y-coordinate, and then reading the labels by increasing x-coordinate. - Sergi Elizalde, Sep 27 2021
REFERENCES
D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms. Birkhäuser, Boston, 3rd edition, 1990, p. 86.
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.4.8 Answer to Exer. 8.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
Andrei Asinowski and Toufik Mansour, Separable d-Permutations and Guillotine Partitions, arXiv 0803.3414 [math.CO], 2008. Annals of Combinatorics 14 (1) pp.17-43 Springer, 2010; Abstract
George Balla, Ghislain Fourier, and Kunda Kambaso, PBW filtration and monomial bases for Demazure modules in types A and C, arXiv:2205.01747 [math.RT], 2022.
M. Barnabei, F. Bonetti, and M. Silimbani, Two permutation classes related to the Bubble Sort operator, Electronic Journal of Combinatorics 19(3) (2012), #P25. - From N. J. A. Sloane, Dec 25 2012
Yonah Biers-Ariel, A New Sequence Counted by OEIS Sequence a006012, arXiv:1706.07064 [math.CO], 2017.
Yonah Biers-Ariel, The Number of Permutations Avoiding a Set of Generalized Permutation Patterns, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.3.
Rocco Chirivì, Xin Fang, and Ghislain Fourier, Degenerate Schubert varieties in type A, Transformation Groups (2020).
CombOS - Combinatorial Object Server, Generate pattern-avoiding permutations
Sergi Elizalde, The X-class and almost-increasing permutations, arXiv:0710.5168 [math:CO], 2007. Ann. Comb. 15 (2011), 51-68.
S. Felsner and D. Heldt, Lattice Path Enumeration and Toeplitz Matrices, J. Int. Seq. 18 (2015) # 15.1.3.
Elizabeth Hartung, Hung Phuc Hoang, Torsten Mütze, and Aaron Williams, Combinatorial generation via permutation languages. I. Fundamentals, arXiv:1906.06069 [cs.DM], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
Alice L. L. Gao and Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
Donghyun Kim and Lauren Williams, Schubert polynomials, the inhomogeneous TASEP, and evil-avoiding permutations, arXiv:2106.13378 [math.CO], 2021.
Sergey Kitaev and Artem Pyatkin, On permutations avoiding partially ordered patterns defined by bipartite graphs, arXiv:2204.08936 [math.CO], 2022.
Joshua Marsh and Nathan Williams, Nesting Nonpartitions, J. Int. Seq., Vol. 25 (2022), Article 22.8.8.
Arturo Merino and Torsten Mütze, Combinatorial generation via permutation languages. III. Rectangulations, arXiv:2103.09333 [math.CO], 2021.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Markus Saers, Dekai Wu, and Chris Quirk, On the Expressivity of Linear Transductions.
Yi-dong Sun and Cang-zhi Jia, Counting Dyck paths with strictly increasing peak sequences, J. Math. Res. Expos. 27 (2) (2007) 253, Theorem 3.11.
FORMULA
G.f.: (1-2*x)/(1 - 4*x + 2*x^2).
a(n) = 2*A007052(n-1) = A056236(n)/2.
Binomial transform of A001333. E.g.f. exp(2x)cosh(x*sqrt(2)). - Paul Barry, May 08 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*2^(n-k) = Sum_{k=0..n} binomial(n, k)*2^(n-k/2)(1+(-1)^k)/2. - Paul Barry, Nov 22 2003 (typo corrected by Manfred Scheucher, Jan 17 2023)
a(n) = ((2+sqrt(2))^n + (2-sqrt(2))^n)/2.
a(n) = Sum_{k=0..n} 2^k*A098158(n,k). - Philippe Deléham, Dec 04 2006
a(n) = A007070(n) - 2*A007070(n-1). - R. J. Mathar, Nov 16 2007
a(n) = Sum_{k=0..n} A147703(n,k). - Philippe Deléham, Nov 29 2008
a(n) = Sum_{k=0..n} A201730(n,k). - Philippe Deléham, Dec 05 2011
G.f.: G(0) where G(k)= 1 + 2*x/((1-2*x) - 2*x*(1-2*x)/(2*x + (1-2*x)*2/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2012
G.f.: G(0)*(1-2*x)/2, where G(k) = 1 + 1/(1 - 2*x*(4*k+2-x)/( 2*x*(4*k+4-x) + 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 27 2014
a(-n) = a(n) / 2^n for all n in Z. - Michael Somos, Aug 24 2014
a(n) = A265185(n) / 4, connecting this sequence to the simple Lie algebra B_4. - Tom Copeland, Dec 04 2015
E.g.f.: exp(2*x)*cosh(sqrt(2)*x). - Stefano Spezia, Nov 13 2019
MAPLE
A006012:=-(-1+2*z)/(1-4*z+2*z**2); # Simon Plouffe in his 1992 dissertation
with(GraphTheory): G:=PathGraph(7): A:= AdjacencyMatrix(G): nmax:=24; n2:=2*nmax: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1, k], k=1..7); od: seq(a(2*n), n=0..nmax); # Johannes W. Meijer, May 29 2010
MATHEMATICA
LinearRecurrence[{4, -2}, {1, 2}, 50] (* or *) With[{c=Sqrt[2]}, Simplify[ Table[((2+c)^n+(3+2c)(2-c)^n)/(2(2+c)), {n, 50}]]] (* Harvey P. Dale, Aug 29 2011 *)
PROG
(PARI) {a(n) = real(((2 + quadgen(8))^n))}; /* Michael Somos, Feb 12 2004 */
(PARI) {a(n) = if( n<0, 2^n, 1) * polsym(x^2 - 4*x + 2, abs(n))[abs(n)+1] / 2}; /* Michael Somos, Feb 12 2004 */
(PARI) Vec((1-2*x)/(1-4*x+2*x^2) + O(x^100)) \\ Altug Alkan, Dec 05 2015
(Magma) [n le 2 select n else 4*Self(n-1)- 2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 05 2011
(Haskell)
a006012 n = a006012_list !! n
a006012_list = 1 : 2 : zipWith (-) (tail $ map (* 4) a006012_list)
(map (* 2) a006012_list)
-- Reinhard Zumkeller, Oct 03 2011
(Python)
l = [1, 2]
for n in range(2, 101): l.append(4 * l[n - 1] - 2 * l[n - 2])
print(l) # Indranil Ghosh, Jul 02 2017
KEYWORD
nonn,easy
STATUS
approved
a(n) = 4*a(n-1) - 2*a(n-2) (n >= 3).
(Formerly M1763)
+10
43
1, 2, 7, 24, 82, 280, 956, 3264, 11144, 38048, 129904, 443520, 1514272, 5170048, 17651648, 60266496, 205762688, 702517760, 2398545664, 8189147136, 27959497216, 95459694592, 325919783936, 1112759746560, 3799199418368, 12971278180352, 44286713884672, 151204299177984
OFFSET
0,2
COMMENTS
Gives the number of L-convex polyominoes with n cells, that is convex polyominoes where any two cells can be connected by a path internal to the polyomino and which has at most 1 change of direction (i.e., one of the four orientation of the L). - Simone Rinaldi (rinaldi(AT)unisi.it), Feb 19 2007
Joe Keane (jgk(AT)jgk.org) observes that this sequence (beginning at 2) is "size of raises in pot-limit poker, one blind, maximum raising".
Dimensions of the graded components of the Hopf algebra of noncommutative multi-symmetric functions of level 2. For level r, the sequence would be the INVERT transform of binomial(n+r-1,n). - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008
The sum of the numbers in the n-th row of the summatory Pascal triangle (A059576). - Ron R. King, Jan 22 2009
(1 + 2x + 7x^2 + 24x^3 + ...) = 1 / (1 - 2x - 3x^2 - 4x^3 - ...). - Gary W. Adamson, Jul 27 2009
Let M be a triangle with the odd-indexed Fibonacci numbers (1, 2, 5, 13, ...) in every column, with the leftmost column shifted upwards one row. A003480 = lim_{n->oo} M^n, the left-shifted vector considered as a sequence. The analogous operation using the even-indexed Fibonacci numbers generates A001835 starting with offset 1. - Gary W. Adamson, Jul 27 2010
a(n) is the number of generalized compositions of n when there are i+1 different types of the part i, (i=1,2,...). - Milan Janjic, Sep 24 2010
Let h(t) = (1-t)^2/(2*(1-t)^2-1) = 1/(1-(2*t + 3*t^2 + 4*t^3 + ...)),
an o.g.f. for A003480, then
A001003(n) = (1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=1. - Tom Copeland, Sep 06 2011
Excluding the initial 1, a(n) is the 2nd subdiagonal of A228405. - Richard R. Forberg, Sep 02 2013
REFERENCES
G. Castiglione and A. Restivo, L-convex polyominoes: a survey, Chapter 2 of K. G. Subranian et al., eds., Formal Models, Languages and Applications, World Scientific, 2015.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe)
D. Battaglino, J. M. Fedou, S. Rinaldi, and S. Socci, The number of k-parallelogram polyominoes, FPSAC 2013 Paris, France DMTCS Proc. AS, 2013, 1143-1154.
Daniel Birmajer, Juan B. Gil, and Michael D. Weiner, (an + b)-color compositions, arXiv:1707.07798 [math.CO], 2017.
Adrien Boussicault, Simone Rinaldi, and Samanta Socci, The number of directed k-convex polyominoes, arXiv preprint arXiv:1501.00872 [math.CO], 2015; Discrete Math., 343 (2020), #111731, 22 pages. See t_n.
Steve Butler, Jeongyoon Choi, Kimyung Kim, and Kyuhyeok Seo, Enumerating multiplex juggling patterns, arXiv:1702.05808 [math.CO], 2017.
P. J. Cameron, Some sequences of integers, Discrete Math., 75 (1989), 89-102; also in "Graph Theory and Combinatorics 1988", ed. B. Bollobas, Annals of Discrete Math., 43 (1989), 89-102.
G. Castiglione, A. Frosini, E. Munarini, A. Restivo, and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
Yumin Cho, Jaehyun Kim, Jang Soo Kim, and Nakyung Lee, Enumeration of multiplex juggling card sequences using generalized q-derivatives, arXiv:2402.09903 [math.CO], 2024. See p. 6.
Tomislav Doslic, Planar polycyclic graphs and their Tutte polynomials, Journal of Mathematical Chemistry, Volume 51, Issue 6, 2013, pp. 1599-1607.
E. Duchi, S. Rinaldi, and G. Schaeffer, The number of Z-convex polyominoes, arXiv:math/0602124 [math.CO], 2006.
A. Frosini and S. Rinaldi, An object grammar for the class of L-convex polyominoes, PU.M.A. Vol. 17 (2006), No. 1-2, pp. 97-110.
Y-h. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq (12).
Harri Hakula, Helmut Harbrecht, Vesa Kaarnioja, Frances Y. Kuo, and Ian H. Sloan, Uncertainty quantification for random domains using periodic random variables, arXiv:2210.17329 [math.NA], 2022.
Milan Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
FORMULA
a(n) = (n+1)*a(0) + n*a(1) + ... + 3*a(n-2) + 2*a(n-1). - Amarnath Murthy, Aug 17 2002
G.f.: (1-x)^2/(1-4*x+2*x^2). - Simon Plouffe in his 1992 dissertation
a(n) = A007070(n)/2, n > 0.
G.f.: 1/( 1 - Sum_{k>=1} (k+1)*x^k ).
a(n+1)*a(n+1) - a(n+2)*a(n) = 2^n, n > 0. - D. G. Rogers, Jul 12 2004
For n > 0, a(n) = ((2+sqrt(2))^(n+1) - (2-sqrt(2))^(n+1))/(4*sqrt(2)). - Rolf Pleisch, Aug 03 2009
If the leading 1 is removed, 2, 7, 24, ... is the binomial transform of 2, 5, 12, 29, ..., which is A000129 without its first 2 terms, and the second binomial transform of 2, 3, 4, 6, ..., which is A029744, again without its leading 1. - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
a(n) = Sum((1+p_1)*(1+p_2)*...*(1+p_m)), summation being over all compositions (p_1, p_2, ..., p_m) of n. Example: a(3)=24; indeed, the compositions of 3 are (1,1,1), (1,2), (2,1), (3) and we have 2*2*2 + 2*3 + 3*2 + 4 = 24. - Emeric Deutsch, Oct 17 2010
a(n) = Sum_{k>=0} binomial(n+2*k-1,n) / 2^(k+1). - Vaclav Kotesovec, Dec 31 2013
E.g.f.: (1 + exp(2*x)*(cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x)))/2. - Stefano Spezia, May 20 2024
MAPLE
INVERT([seq(n+1, n=1..20)]); # Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Jun 26 2008
MATHEMATICA
a[0]=1; a[1]=2; a[2]=7; a[n_]:=a[n]=4*a[n-1] - 2*a[n-2]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 22 2011 *)
Join[{1}, LinearRecurrence[{4, -2}, {2, 7}, 40]] (* Harvey P. Dale, Oct 23 2011 *)
PROG
(PARI) a(n)=polcoeff((1-x)^2/(1-4*x+2*x^2)+x*O(x^n), n)
(PARI) a(n)=local(x); if(n<1, n==0, x=(2+quadgen(8))^n; imag(x)+real(x)/2)
(Haskell)
a003480 n = a003480_list !! n
a003480_list = 1 : 2 : 7 : (tail $ zipWith (-)
(tail $ map (* 4) a003480_list) (map (* 2) a003480_list))
-- Reinhard Zumkeller, Jan 16 2012, Oct 03 2011
CROSSREFS
Row sums of A059576 and of A181289. Second differences of A007070.
Column k=2 of A261780.
KEYWORD
nonn,easy,nice
STATUS
approved
a(n) = 2*a(n-1) - 10*a(n-2), with a(0) = 0, a(1) = 1.
+10
37
0, 1, 2, -6, -32, -4, 312, 664, -1792, -10224, -2528, 97184, 219648, -532544, -3261568, -1197696, 30220288, 72417536, -157367808, -1038910976, -504143872, 9380822016, 23803082752, -46202054656, -330434936832, -198849327104, 2906650714112, 7801794699264
OFFSET
0,3
COMMENTS
For the difference equation a(n) = c*a(n-1) - d*a(n-2), with a(0) = 0, a(1) = 1, the solution is a(n) = d^((n-1)/2) * ChebyshevU(n-1, c/(2*sqrt(d))) and has the alternate form a(n) = ( ((c + sqrt(c^2 - 4*d))/2)^n - ((c - sqrt(c^2 - 4*d))/2)^n )/sqrt(c^2 - 4*d). In the case c^2 = 4*d then the solution is a(n) = n*d^((n-1)/2). The generating function is x/(1 - c*x + d^2) and the exponential generating function takes the form (2/sqrt(c^2 - 4*d))*exp(c*x/2)*sinh(sqrt(c^2 - 4*d)*x/2) for c^2 > 4*d, (2/sqrt(4*d - c^2))*exp(c*x/2)*sin(sqrt(4*d - c^2)*x/2) for 4*d > c^2, and x*exp(sqrt(d)*x) if c^2 = 4*d. - G. C. Greubel, Jun 10 2022
FORMULA
G.f.: x / ( 1 - 2*x + 10*x^2 ). - R. J. Mathar, Jun 01 2011
E.g.f.: (1/3)*exp(x)*sin(3*x). - Franck Maminirina Ramaharo, Nov 13 2018
a(n) = 10^((n-1)/2) * ChebyshevU(n-1, 1/sqrt(10)). - G. C. Greubel, Jun 10 2022
a(n) = (1/3)*10^(n/2)*sin(n*arctan(3)) = Sum_{k=0..floor(n/2)} (-1)^k*3^(2*k)*binomial(n,2*k+1). - Gerry Martens, Oct 15 2022
MATHEMATICA
LinearRecurrence[{2, -10}, {0, 1}, 50]
PROG
(Magma) I:=[0, 1]; [n le 2 select I[n] else 2*Self(n-1)-10*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 17 2011
(PARI) a(n)=([0, 1; -10, 2]^n*[0; 1])[1, 1] \\ Charles R Greathouse IV, Apr 08 2016
(SageMath) [lucas_number1(n, 2, 10) for n in (0..50)] # G. C. Greubel, Jun 10 2022
KEYWORD
sign,easy
AUTHOR
STATUS
approved
a(n) = 4*a(n-1) + 2*a(n-2) for n>1, a(0)=0, a(1)=1.
+10
29
0, 1, 4, 18, 80, 356, 1584, 7048, 31360, 139536, 620864, 2762528, 12291840, 54692416, 243353344, 1082798208, 4817899520, 21437194496, 95384577024, 424412697088, 1888419942400, 8402505163776, 37386860539904, 166352452487168
OFFSET
0,3
COMMENTS
Starting with "1" = INVERT transform of A007482: (1, 3, 11, 39, 139, ...). - Gary W. Adamson, Aug 06 2010
This is the Lucas sequence U(4,-2). - Bruno Berselli, Jan 09 2013
Lower left term in matrix powers of [(1,5); (1,3)]. Convolved with (1, 2, 0, 0, 0, ...) the result is A164549: (1, 6, 26, 116, ...). - Gary W. Adamson, Aug 10 2016
For n>0, a(n) equals the number of words of length n-1 over {0,1,2,3,4,5} in which 0 and 1 avoid runs of odd lengths. - Milan Janjic, Jan 08 2017
FORMULA
G.f.: x/(1 - 4*x - 2*x^2).
a(n) = (-i*sqrt(2))^(n-1) U(n-1, i*sqrt(2)) where U is the Chebyshev polynomial of the second kind and i^2 = -1.
a(n) = ((2+sqrt(6))^n - (2-sqrt(6))^n)/(2 sqrt(6)). - Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009, Jan 07 2009
a(n+1) = Sum_{k=0..n} A099089(n,k)*2^k. - Philippe Deléham, Nov 21 2011
From Ilya Gutkovskiy, Aug 22 2016: (Start)
E.g.f.: sinh(sqrt(6)*x)*exp(2*x)/sqrt(6).
Number of zeros in substitution system {0 -> 11, 1 -> 11011} at step n from initial string "1" (1 -> 11011 -> 1101111011111101111011 -> ...). (End)
MATHEMATICA
a[n_Integer] := (-I Sqrt[2])^(n - 1) ChebyshevU[ n - 1, I Sqrt[2] ]
a[n_]:=(MatrixPower[{{1, 5}, {1, 3}}, n].{{1}, {1}})[[2, 1]]; Table[Abs[a[n]], {n, -1, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
t={0, 1}; Do[AppendTo[t, 4*t[[-1]]+2*t[[-2]]], {n, 2, 23}]; t (* or *) LinearRecurrence[{4, 2}, {0, 1}, 24] (* Indranil Ghosh, Feb 21 2017 *)
PROG
(Sage) [lucas_number1(n, 4, -2) for n in range(0, 23)] # Zerinvary Lajos, Apr 23 2009
(Magma) I:=[0, 1]; [n le 2 select I[n] else 4*Self(n-1)+2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Oct 12 2011
(PARI) Vec(x/(1-4*x-2*x^2)+O(x^99)) \\ Charles R Greathouse IV, Oct 12 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Nov 19 2003
EXTENSIONS
Edited by Stuart Clary, Oct 25 2009
STATUS
approved
a(n) = 2*a(n-2) for n > 2; a(1) = 1, a(2) = 2.
+10
27
1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152, 2097152
OFFSET
1,2
COMMENTS
a(n+1) is the number of palindromic words of length n using a two-letter alphabet. - Michael Somos, Mar 20 2011
FORMULA
a(n) = 2^((1/4)*(2*n - 1 + (-1)^n)).
G.f.: x*(1 + 2*x)/(1 - 2*x^2).
a(n) = A051032(n) - 1.
G.f.: x / (1 - 2*x / (1 + x / (1 + x))) = x * (1 + 2*x / (1 - x / (1 - x / (1 + 2*x)))). - Michael Somos, Jan 03 2013
From R. J. Mathar, Aug 06 2009: (Start)
a(n) = A131572(n).
a(n) = A060546(n-1), n > 1. (End)
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = |A009116(n-1)| + |A009545(n-1)|. - Bruno Berselli, May 30 2011
E.g.f.: cosh(sqrt(2)*x) + sinh(sqrt(2)*x)/sqrt(2) - 1. - Stefano Spezia, Feb 05 2023
EXAMPLE
x + 2*x^2 + 2*x^3 + 4*x^4 + 4*x^5 + 8*x^6 + 8*x^7 + 16*x^8 + 16*x^9 + 32*x^10 + ...
MATHEMATICA
LinearRecurrence[{0, 2}, {1, 2}, 50] (* Paolo Xausa, Feb 02 2024 *)
PROG
(Magma) [ n le 2 select n else 2*Self(n-2): n in [1..43] ];
(PARI) {a(n) = if( n<1, 0, 2^(n\2))} /* Michael Somos, Mar 20 2011 */
(Sage)
def A163403():
x, y = 1, 1
while True:
yield x
x, y = x + y, x - y
a = A163403(); [next(a) for i in range(40)] # Peter Luschny, Jul 11 2013
CROSSREFS
Equals A016116 without initial 1. Unsigned version of A152166.
Partial sums are in A136252.
Binomial transform is A078057, second binomial transform is A007070, third binomial transform is A102285, fourth binomial transform is A163350, fifth binomial transform is A163346.
Cf. A000079 (powers of 2), A009116, A009545, A051032.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jul 26 2009
STATUS
approved
Power ceiling-floor sequence of (golden ratio)^4.
+10
20
7, 47, 323, 2213, 15169, 103969, 712615, 4884335, 33477731, 229459781, 1572740737, 10779725377, 73885336903, 506417632943, 3471038093699, 23790849022949, 163064905066945, 1117663486445665, 7660579500052711
OFFSET
0,1
COMMENTS
Let f = floor and c = ceiling. For x > 1, define four sequences as functions of x, as follows:
p1(0) = f(x), p1(n) = f(x*p1(n-1));
p2(0) = f(x), p2(n) = c(x*p2(n-1)) if n is odd and p2(n) = f(x*p1(n-1)) if n is even;
p3(0) = c(x), p3(n) = f(x*p3(n-1)) if n is odd and p3(n) = c(x*p3(n-1)) if n is even;
p4(0) = c(x), p4(n) = c(x*p4(n-1)).
The present sequence is given by a(n) = p3(n).
Following the terminology at A214986, call the four sequences power floor, power floor-ceiling, power ceiling-floor, and power ceiling sequences. In the table below, a sequence is identified with an A-numbered sequence if they appear to agree except possibly for initial terms. Notation: S(t)=sqrt(t), r = (1+S(5))/2 = golden ratio, and Limit = limit of p3(n)/p2(n).
x ......p1..... p2..... p3..... p4.......Limit
r^2.....A001519 A001654 A061646 A001906..-1+S(5)
r^3.....A024551 A001076 A015448 A049652..-1+S(5)
r^4.....A049685 A157335 A214992 A004187..-19+9*S(5)
r^5.....A214993 A049666 A015457 A214994...(-9+5*S(5))/2
r^6.....A007805 A156085 A214995 A049660..-151+68*S(5)
2+S(2)..A007052 A214996 A214997 A007070..(1+S(2))/2
1+S(3)..A057960 A002605 A028859 A077846..(1+S(3))/2
2+S(3)..A001835 A109437 A214998 A001353..-4+3*S(3)
S(5)....A214999 A215091 A218982 A218983..1.26879683...
2+S(5)..A024551 A001076 A015448 A049652..-1+S(5)
2+S(6)..A218984 A090017 A123347 A218985..S(3/2)
2+S(7)..A218986 A015530 A126473 A218987..(1+S(7))/3
2+S(8)..A218988 A057087 A086347 A218989..(1+S(2))/2
3+S(8)..A001653 A084158 A218990 A001109..-13+10*S(2)
3+S(10).A218991 A005668 A015451 A218992..-2+S(10)
...
Properties of p1, p2, p3, p4:
(1) If x > 2, the terms of p2 and p3 interlace: p2(0) < p3(0) < p2(1) < p3(1) < p2(2) < p3(2)... Also, p1(n) <= p2(n) <= p3(n) <= p4(n) <= p1(n+1) for all x>0 and n>=0.
(2) If x > 2, the limits L(x) = limit(p/x^n) exist for the four functions p(x), and L1(x) <= L2(x) <= L3(x) <= L4 (x). See the Mathematica programs for plots of the four functions; one of them also occurs in the Odlyzko and Wilf article, along with a discussion of the special case x = 3/2.
(3) Suppose that x = u + sqrt(v) where v is a nonsquare positive integer. If u = f(x) or u = c(x), then p1, p2, p3, p4 are linear recurrence sequences. Is this true for sequences p1, p2, p3, p4 obtained from x = (u + sqrt(v))^q for every positive integer q?
(4) Suppose that x is a Pisot-Vijayaraghavan number. Must p1, p2, p3, p4 then be linearly recurrent? If x is also a quadratic irrational b + c*sqrt(d), must the four limits L(x) be in the field Q(sqrt(d))?
(5) The Odlyzko and Wilf article (page 239) raises three interesting questions about the power ceiling function; it appears that they remain open.
FORMULA
a(n) = floor(r*a(n-1)) if n is odd and a(n) = ceiling(r*a(n-1)) if n is even, where a(0) = ceiling(r), r = (golden ratio)^4 = (7 + sqrt(5))/2.
a(n) = 6*a(n-1) + 6*a(n-2) - a(n-3).
G.f.: (7 + 5*x - x^2)/((1 + x)*(1 - 7*x + x^2)).
a(n) = (10*(-2)^n+(10+3*sqrt(5))*(7-3*sqrt(5))^(n+2)+(10-3*sqrt(5))*(7+3*sqrt(5))^(n+2))/(90*2^n). - Bruno Berselli, Nov 14 2012
a(n) = 7*A157335(n) + 5*A157335(n-1) - A157335(n-2). - R. J. Mathar, Feb 05 2020
E.g.f.: exp(-x)*(5 + 2*exp(9*x/2)*(155*cosh(3*sqrt(5)*x/2) + 69*sqrt(5)*sinh(3*sqrt(5)*x/2)))/45. - Stefano Spezia, Oct 28 2024
EXAMPLE
a(0) = ceiling(r) = 7, where r = ((1+sqrt(5))/2)^4 = 6.8...; a(1) = floor(7*r) = 47; a(2) = ceiling(47) = 323.
MATHEMATICA
(* Program 1. A214992 and related sequences *)
x = GoldenRatio^4; z = 30; (* z = # terms in sequences *)
z1 = 100; (* z1 = # digits in approximations *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
Table[p1[n], {n, 0, z}] (* A049685 *)
Table[p2[n], {n, 0, z}] (* A157335 *)
Table[p3[n], {n, 0, z}] (* A214992 *)
Table[p4[n], {n, 0, z}] (* A004187 *)
Table[p4[n] - p1[n], {n, 0, z}] (* A004187 *)
Table[p3[n] - p2[n], {n, 0, z}] (* A098305 *)
(* Program 2. Plot of power floor and power ceiling functions, p1(x) and p4(x) *)
f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];
p1[x_, 0] := f[x]; p1[x_, n_] := f[x*p1[x, n - 1]];
p4[x_, 0] := c[x]; p4[x_, n_] := c[x*p4[x, n - 1]];
Plot[Evaluate[{p1[x, 10]/x^10, p4[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]
(* Program 3. Plot of power floor-ceiling and power ceiling-floor functions, p2(x) and p3(x) *)
f[x_] := f[x] = Floor[x]; c[x_] := c[x] = Ceiling[x];
p2[x_, 0] := f[x]; p3[x_, 0] := c[x];
p2[x_, n_] := If[Mod[n, 2] == 1, c[x*p2[x, n - 1]], f[x*p2[x, n - 1]]]
p3[x_, n_] := If[Mod[n, 2] == 1, f[x*p3[x, n - 1]], c[x*p3[x, n - 1]]]
Plot[Evaluate[{p2[x, 10]/x^10, p3[x, 10]/x^10}], {x, 2, 3}, PlotRange -> {0, 4}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 08 2012, Jan 24 2013
STATUS
approved
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 2x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2x - x^2.
+10
19
1, 2, 2, 5, 6, 3, 12, 20, 12, 4, 29, 60, 50, 20, 5, 70, 174, 180, 100, 30, 6, 169, 490, 609, 420, 175, 42, 7, 408, 1352, 1960, 1624, 840, 280, 56, 8, 985, 3672, 6084, 5880, 3654, 1512, 420, 72, 9, 2378, 9850, 18360, 20280, 14700, 7308, 2520, 600, 90, 10
OFFSET
1,2
COMMENTS
Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.
LINKS
Rigoberto Flórez, Robinson Higuita, and Antara Mukherjee, Characterization of the strong divisibility property for generalized Fibonacci polynomials, Integers, 18 (2018), Paper No. A14.
FORMULA
p(n, x) = u*p(n-1, x) + v*p(n-2, x) for n >= 3, where p(1, x) = 1, p(2, x) = 2 + 2 x, u = p(2, x), and v = 1 - 2x - x^2.
p(n, x) = k*(b^n - c^n), where k = sqrt(1/8), b = x + 1 - sqrt(2), c = x + 1 + sqrt(2).
From Werner Schulte, Nov 24 2023 and Nov 25 2023: (Start)
The row polynomials p(n, x) = Sum_{k=0..n-1} T(n, k) * x^k satisfy the equation p'(n, x) = n * p(n-1, x) where p' is the first derivative of p.
T(n, k) = T(n-1, k-1) * n / k for 0 < k < n and T(n, 0) = A000129(n) for n > 0.
T(n, k) = A000129(n-k) * binomial(n, k) for 0 <= k < n.
G.f.: t / (1 - (2+2*x) * t - (1-2*x-x^2) * t^2). (End)
EXAMPLE
First nine rows:
[n\k] 0 1 2 3 4 5 6 7 8
[1] 1;
[2] 2 2;
[3] 5 6 3;
[4] 12 20 12 4;
[5] 29 60 50 20 5;
[6] 70 174 180 100 30 6;
[7] 169 490 609 420 175 42 7;
[8] 408 1352 1960 1624 840 280 56 8;
[9] 985 3672 6084 5880 3654 1512 420 72 9;
.
Row 4 represents the polynomial p(4,x) = 12 + 20 x + 12 x^2 + 4 x^3, so that (T(4,k)) = (12, 20, 12, 4), k = 0..3.
MAPLE
P := proc(n) option remember; ifelse(n <= 1, n, 2*P(n - 1) + P(n - 2)) end:
T := (n, k) -> P(n - k) * binomial(n, k):
for n from 1 to 9 do [n], seq(T(n, k), k = 0..n-1) od;
# (after Werner Schulte) Peter Luschny, Nov 24 2023
MATHEMATICA
p[1, x_] := 1; p[2, x_] := 2 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
CROSSREFS
Cf. A000129 (column 1), A361732 (column 2), A000027 (T(n,n-1)), A007070 (row sums, p(n,1)), A077957 (alternating row sums, p(n,-1)), A081179 (p(n,2), A077985 (p(n,-2), A081180 (p(n,3)), A007070 (p(n,-3)), A081182 (p(n,4)), A094440, A367208, A367209, A367210.
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Nov 13 2023
STATUS
approved
3rd binomial transform of (0,1,0,2,0,4,0,8,0,16,...).
+10
17
0, 1, 6, 29, 132, 589, 2610, 11537, 50952, 224953, 993054, 4383653, 19350540, 85417669, 377052234, 1664389721, 7346972688, 32431108081, 143157839670, 631929281453, 2789470811028, 12313319895997, 54353623698786
OFFSET
0,3
COMMENTS
Binomial transform of 0, 1, 4, 14, 48, ... (A007070 with offset 1) and second binomial transform of A000129. - R. J. Mathar, Dec 10 2011
LINKS
S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
FORMULA
a(n) = 6*a(n-1) - 7*a(n-2), a(0)=0, a(1)=1.
G.f.: x/(1-6*x+7*x^2).
a(n) = ((3+sqrt(2))^n - (3-sqrt(2))^n)/(2*sqrt(2)). [Corrected by Al Hakanson (hawkuu(AT)gmail.com), Dec 27 2008]
a(n) = 3^(n-1) Sum_{i>=0} binomial(n, 2i+1) * (2/9)^i. - Sergio Falcon, Mar 15 2016
a(n) = 2^(-1/2)*7^(n/2)*sinh(n*arcsinh(sqrt(2/7))). - Robert Israel, Mar 15 2016
E.g.f.: exp(3*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017
a(n) = 7^((n-1)/2)*ChebyshevU(n-1, 3/sqrt(7)). - G. C. Greubel, Jan 14 2024
MAPLE
f:= gfun:-rectoproc({a(n) = 6*a(n-1)-7*a(n-2), a(0)=0, a(1)=1}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Mar 15 2016
MATHEMATICA
CoefficientList[Series[x/(1-6 x +7 x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
LinearRecurrence[{6, -7}, {0, 1}, 41] (* G. C. Greubel, Jan 14 2024 *)
PROG
(Sage) [lucas_number1(n, 6, 7) for n in range(0, 23)] # Zerinvary Lajos, Apr 22 2009
(Magma) I:=[0, 1]; [n le 2 select I[n] else 6*Self(n-1)-7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Aug 06 2013
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 11 2003
STATUS
approved

Search completed in 0.039 seconds