[go: up one dir, main page]

login
A123347
Number of words of length n over the alphabet {1,2,3,4,5} such that 1 is not followed by an odd letter.
9
1, 5, 22, 98, 436, 1940, 8632, 38408, 170896, 760400, 3383392, 15054368, 66984256, 298045760, 1326151552, 5900697728, 26255094016, 116821771520, 519797274112, 2312832639488, 10290925106176, 45789365703680, 203739313027072, 906535983515648, 4033622560116736
OFFSET
0,2
COMMENTS
Appears to be Kekulé numbers for certain benzenoids (see the Cyvin-Gutman book for details).
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 78).
LINKS
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, example 17.
FORMULA
From Klaus Brockhaus, Oct 03 2009: (Start)
Inverse binomial transform of A138395.
a(n) = ((2+sqrt(6))^(n+1) + (2-sqrt(6))^(n+1))/4.
a(n) = 4*a(n-1) + 2*a(n-2) for n > 1.
G.f.: (1 + x)/(1 - 4*x - 2*x^2).
(End)
a(n) = A090017(n+1)+A090017(n). - R. J. Mathar, Aug 04 2019
EXAMPLE
a(2) = 22 because all 25 words of length 2 are included except 11, 13 and 15.
MAPLE
seq(coeff(series((1+x)/(1-4*x-2*x^2), x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Nov 27 2018
MATHEMATICA
LinearRecurrence[{4, 2}, {1, 5}, 30] (* Amiram Eldar, Nov 26 2018 *)
PROG
(PARI) Vec((1 + x)/(1 - 4*x - 2*x^2) + O(x^30)) \\ Andrew Howroyd, Nov 25 2018
(Magma) I:=[1, 5]; [n le 2 select I[n] else 4*Self(n-1) + 2*Self(n-2): n in [1..30]]; // G. C. Greubel, Nov 29 2018
(Sage) s=((1+x)/(1-4*x-2*x^2)).series(x, 50); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 29 2018
CROSSREFS
Cf. A138395.
Sequence in context: A129158 A342554 A129164 * A087439 A033452 A346772
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Oct 10 2006
EXTENSIONS
Edited and new name by Armend Shabani and Andrew Howroyd, Nov 25 2018
STATUS
approved