[go: up one dir, main page]

login
Search: a007070 -id:a007070
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,k) is coefficient of z^n*w^k in 1/(1 - 2*z - 2*w + 2*z*w) read by rows in order 00, 10, 01, 20, 11, 02, ...
+10
4
1, 2, 2, 4, 6, 4, 8, 16, 16, 8, 16, 40, 52, 40, 16, 32, 96, 152, 152, 96, 32, 64, 224, 416, 504, 416, 224, 64, 128, 512, 1088, 1536, 1536, 1088, 512, 128, 256, 1152, 2752, 4416, 5136, 4416, 2752, 1152, 256, 512, 2560, 6784, 12160, 16032, 16032, 12160, 6784, 2560, 512
OFFSET
0,2
COMMENTS
Pascal-like triangle: start with 1 at top; every subsequent entry is the sum of everything above you, plus 1.
FORMULA
G.f.: 1/(1 - 2*z - 2*w + 2*z*w).
T(n, k) = Sum_{j=0..n} (-1)^j*2^(n + k - j)*C(n, j)*C(n + k - j, n).
T(n, 0) = T(n, n) = A000079(n).
T(2*n, n) = A084773(n).
T(n, k) = 2^n*binomial(n, k)*hypergeom([-k, k - n], [-n], 1/2). - Peter Luschny, Nov 26 2021
From G. C. Greubel, May 21 2023: (Start)
T(n, n-k) = T(n, k).
Sum_{k=0..n} T(n, k) = A007070(n).
Sum_{k=0..n} (-1)^k * T(n, k) = A077957(n).
T(n, 1) = A057711(n+1) = 2*A001792(n) - [n=0].
T(n, 2) = 4*A049611(n-1). (End)
EXAMPLE
Triangle begins as:
n\k [0] [1] [2] [3] [4] [5] [6] ...
[0] 1;
[1] 2, 2;
[2] 4, 6, 4;
[3] 8, 16, 16, 8;
[4] 16, 40, 52, 40, 16;
[5] 32, 96, 152, 152, 96, 32;
[6] 64, 224, 416, 504, 416, 224, 64;
...
MAPLE
read transforms; SERIES2(1/(1-2*z-2*w+2*z*w), x, y, 12): SERIES2TOLIST(%, x, y, 12);
# Alternative
T := (n, k) -> 2^n*binomial(n, k)*hypergeom([-k, -n + k], [-n], 1/2):
for n from 0 to 10 do seq(simplify(T(n, k)), k = 0 .. n) end do; # Peter Luschny, Nov 26 2021
MATHEMATICA
Table[(-1)^k*2^n*JacobiP[k, -n-1, 0, 0], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 04 2017; May 21 2023 *)
PROG
(Magma)
A059474:= func< n, k | (&+[(-1)^j*2^(n-j)*Binomial(n-k, j)*Binomial(n-j, n-k): j in [0..n-k]]) >;
[A059474(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 21 2023
(SageMath)
def A059474(n, k): return 2^n*binomial(n, k)*simplify(hypergeometric([-k, k-n], [-n], 1/2))
flatten([[A059474(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, May 21 2023
CROSSREFS
See A059576 for a similar triangle.
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Feb 03, 2001; revised Jun 12 2005
STATUS
approved
a(0)=0; a(1)=1; a(n) = a(n-1) + (3 + (-1)^n)*a(n-2)/2.
+10
4
0, 1, 1, 2, 4, 6, 14, 20, 48, 68, 164, 232, 560, 792, 1912, 2704, 6528, 9232, 22288, 31520, 76096, 107616, 259808, 367424, 887040, 1254464, 3028544, 4283008, 10340096, 14623104, 35303296, 49926400, 120532992, 170459392, 411525376
OFFSET
0,4
FORMULA
a(2*n) = A007070(n+1).
a(2*n+1) = A006012(n).
G.f.: x*(1+x-2*x^2)/(1-4*x^2+2*x^4).
a(n) = 4*a(n-2) - 2*a(n-4), a(0)=0, a(1)=1, a(2)=1, a(3)=2. - Harvey P. Dale, May 24 2013
EXAMPLE
a(4) = a(3) + 2*a(2) = 2 + 2 = 4.
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+(3+(-1)^n) (a[n-2])/2}, a, {n, 40}] (* or *) LinearRecurrence[{0, 4, 0, -2}, {0, 1, 1, 2}, 40] (* Harvey P. Dale, May 24 2013 *)
PROG
(PARI) { for (n=0, 200, if (n>1, a=a1 + (3 + (-1)^n)*a2/2; a2=a1; a1=a, if (n==0, a=a2=0, a=a1=1)); write("b062112.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 01 2009
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x-2*x^2)/(1-4*x^2+2*x^4))); // G. C. Greubel, Oct 16 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Olivier Gérard, Jun 05 2001
STATUS
approved
Riordan array (1/((1-x)(1-3x)),x/((1-x)(1-3x))).
+10
4
1, 4, 1, 13, 8, 1, 40, 42, 12, 1, 121, 184, 87, 16, 1, 364, 731, 496, 148, 20, 1, 1093, 2736, 2454, 1040, 225, 24, 1, 3280, 9844, 11064, 6170, 1880, 318, 28, 1, 9841, 34448, 46738, 32624, 13015, 3080, 427, 32, 1, 29524, 118101, 188208, 158724, 79044, 24381, 4704
OFFSET
0,2
COMMENTS
Row sums are A116415. Diagonal sums are A007070. First column is A003462(n+1). Product of A007318 and A116412.
Subtriangle of triangle given by (0, 4, -3/4, 3/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 18 2012
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11324 (rows 0 <= n <= 150)
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
FORMULA
Riordan array (1/(1-4x+3x^2), x/(1-4x+3x^2)); number triangle T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k+j,j)*3^j.
T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(2,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Oct 31 2013
G.f.: (1-4*x+3*x^2)/(1-4*x+3*x^2-x*y). - Philippe Deléham, Oct 31 2013
From Peter Bala, Oct 07 2019: (Start)
O.g.f.: 1/(1 - 4*x + 3*x^2 - x*y) = 1 + (4 + y)*x + (13 + 8*y + y^2)*x^2 + ....
Recurrence for row polynomials: R(n,y) = (4 + y)*R(n-1,y) - 3*R(n-2,y) with R(0,y) = 1 and R(1,y) = 4 + y.
The row reverse polynomial y^n*R(n,1/y) is equal to the numerator polynomial of the finite continued fraction 1 + y/(1 + 3*y/(1 + ... + y/(1 + 3*y/(1)))) (with 2*n partial numerators). Cf. A110441. (End)
EXAMPLE
Triangle begins
1;
4, 1;
13, 8, 1;
40, 42, 12, 1;
121, 184, 87, 16, 1;
364, 731, 496, 148, 20, 1;
Triangle T(n,k), 0 <= k <= n, given by (0, 4, -3/4, 3/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins:
1;
0, 1;
0, 4, 1;
0, 13, 8, 1;
0, 40, 42, 12, 1;
0, 121, 184, 87, 16, 1;
0, 364, 731, 496, 148, 20, 1;
... - Philippe Deléham, Jan 18 2012
MATHEMATICA
With[{n = 10}, DeleteCases[#, 0] & /@ Rest@ CoefficientList[Series[(1 - 4 x + 3 x^2)/(1 - 4 x + 3 x^2 - x y), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Feb 13 2006
STATUS
approved
Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise.
+10
4
1, 4, -1, 15, -8, 1, 56, -46, 12, -1, 209, -232, 93, -16, 1, 780, -1091, 592, -156, 20, -1, 2911, -4912, 3366, -1200, 235, -24, 1, 10864, -21468, 17784, -8010, 2120, -330, 28, -1, 40545, -91824, 89238, -48624, 16255, -3416, 441, -32, 1, 151316, -386373, 430992, -275724, 111524, -29589, 5152, -568, 36, -1
OFFSET
0,2
COMMENTS
The matrices are {4} if n=1, {{4,-1},{-1,4}} if n=2, {{4,-1,0},{-1,4,-1},{0,-1,4}} if n=3 etc. The empty matrix at n=0 has an empty product (determinant) with assigned value =1.
Riordan array (1/(1-4*x+x^2), -x/(1-4*x+x^2)). - Philippe Deléham, Mar 04 2016
LINKS
Joanne Dombrowski, Tridiagonal matrix representations of cyclic self-adjoint operators, Pacific J. Math. 114, no. 2 (1984), 325-334.
FORMULA
T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (4-x)*p(n-1, x) - p(n-2, x), p(0, x) = 1, p(1, x) = 4-x.
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = [x^k]( ChebyshevU(n, (4-x)/2) ).
Sum_{k=0..n} T(n, k) = A001906(n+1).
Sum_{k=0..n} (-1)^k*T(n, k) = A004254(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A007070(n).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000302(n).
T(n, n) = (-1)^n.
T(n, n-1) = 4*A181983(n), n >= 1.
T(n, n-2) = (-1)^n*A139278(n-1), n >= 2.
T(n, 0) = A001353(n+1). (End)
EXAMPLE
Triangle begins as:
1;
4, -1;
15, -8, 1;
56, -46, 12, -1;
209, -232, 93, -16, 1;
780, -1091, 592, -156, 20, -1;
2911, -4912, 3366, -1200, 235, -24, 1;
10864, -21468, 17784, -8010, 2120, -330, 28, -1;
MAPLE
A123966x := proc(n, x)
local A, r, c ;
A := Matrix(1..n, 1..n) ;
for r from 1 to n do
for c from 1 to n do
A[r, c] :=0 ;
if r = c then
A[r, c] := A[r, c]+4 ;
elif abs(r-c)= 1 then
A[r, c] := A[r, c]-1 ;
end if;
end do:
end do:
(-1)^n*LinearAlgebra[CharacteristicPolynomial](A, x) ;
end proc;
A123966 := proc(n, k)
coeftayl( A123966x(n, x), x=0, k) ;
end proc:
seq(seq(A123966(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Dec 06 2011
MATHEMATICA
(* Matrix version*)
k = 4;
T[n_, m_, d_]:= If[n==m, k, If[n==m-1 || n==m+1, -1, 0]];
M[d_]:= Table[T[n, m, d], {n, d}, {m, d}];
Table[M[d], {d, 10}]
Table[Det[M[d]], {d, 10}]
Table[Det[M[d] - x*IdentityMatrix[d]], {d, 10}]
Join[{M[1]}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d, 10}]]//Flatten
(* Recursive Polynomial form*)
p[0, x]= 1; p[1, x]= (4-x); p[k_, x_]:= p[k, x]= (4-x)*p[k-1, x] - p[k -2, x];
Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten
(* Additional program *)
Table[CoefficientList[ChebyshevU[n, (4-x)/2], x], {n, 0, 12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
PROG
(Magma)
m:=12;
R<x>:=PowerSeriesRing(Integers(), m+2);
A124029:= func< n, k | Coefficient(R!( Evaluate(ChebyshevU(n+1), (4-x)/2) ), k) >;
[A124029(n, k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
(SageMath)
def A124029(n, k): return ( chebyshev_U(n, (4-x)/2) ).series(x, n+2).list()[k]
flatten([[A124029(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023
CROSSREFS
Cf. A139278, A159764, A181983, A207823 (absolute values).
KEYWORD
tabl,sign
AUTHOR
STATUS
approved
a(n) = ((9 + sqrt(2))^n - (9 - sqrt(2))^n)/(2*sqrt(2)).
+10
4
1, 18, 245, 2988, 34429, 383670, 4186169, 45041112, 480032665, 5082340122, 53559541661, 562566880260, 5895000053461, 61667217421758, 644304909368225, 6725778192309168, 70163919621475249, 731614075994130210
OFFSET
1,2
COMMENTS
Preceded by zero, this is the eighth binomial transform of the Pell sequence A000129. - Sergio Falcon, Sep 21 2009; edited by Klaus Brockhaus, Oct 11 2009
Eighth binomial transform of A048697.
First differences are in A164600.
lim_{n -> infinity} a(n)/a(n-1) = 9 + sqrt(2) = 10.4142135623....
LINKS
S. Falcon, Iterated Binomial Transforms of the k-Fibonacci Sequence, British Journal of Mathematics & Computer Science, 4 (22): 2014.
FORMULA
a(n) = 18*a(n-1) - 79*a(n-2) for n>1; a(0)=0, a(1)=1. - Philippe Deléham, Jan 01 2009
G.f.: x/(1 - 18*x + 79*x^2). - Klaus Brockhaus, Dec 31 2008, corrected Oct 11 2009
a(n) = Sum[Binomial[n - 1 - i, i] (-1)^i * 18^(n - 1 - 2 i) * 79^i, {i, 0, Floor[(n - 1)/2]}]. - Sergio Falcon, Sep 21 2009
E.g.f.: exp(9*x)*sinh(sqrt(2)*x)/sqrt(2). - Ilya Gutkovskiy, Aug 12 2017
MATHEMATICA
Join[{a=1, b=18}, Table[c=18*b-79*a; a=b; b=c, {n, 40}]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011 *)
LinearRecurrence[{18, -79}, {1, 18}, 25] (* G. C. Greubel, Aug 22 2016 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((9+r)^n-(9-r)^n)/(2*r): n in [1..18] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Dec 31 2008
CROSSREFS
Cf. A000129 (Pell numbers), A007070, A081185, A081184, A081183, A081182, A081180, A081179. - Sergio Falcon, Sep 21 2009
Cf. A002193 (decimal expansion of sqrt(2)), A048697, A164600.
KEYWORD
nonn
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Dec 29 2008
EXTENSIONS
Extended beyond a(7) by Klaus Brockhaus, Dec 31 2008
Edited by Klaus Brockhaus, Oct 11 2009
STATUS
approved
a(n) = ((5 + 2*sqrt(2))*(2 + sqrt(2))^n + (5 - 2*sqrt(2))*(2 - sqrt(2))^n)/2.
+10
4
5, 14, 46, 156, 532, 1816, 6200, 21168, 72272, 246752, 842464, 2876352, 9820480, 33529216, 114475904, 390845184, 1334428928, 4556025344, 15555243520, 53108923392, 181325206528, 619082979328, 2113681504256, 7216560058368
OFFSET
0,1
COMMENTS
Binomial transform of A163607. Inverse binomial transform of A163609.
FORMULA
a(n) = 4*a(n-1) - 2*a(n-2) for n > 1; a(0) = 5, a(1) = 14.
G.f.: (5-6*x)/(1-4*x+2*x^2).
a(n) = 5*A007070(n) - 6*A007070(n-1). - R. J. Mathar, Nov 08 2013
E.g.f.: exp(2*x)*( 5*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Jul 29 2017
MATHEMATICA
LinearRecurrence[{4, -2}, {5, 14}, 30] (* Harvey P. Dale, Jan 31 2017 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+2*r)*(2+r)^n+(5-2*r)*(2-r)^n)/2: n in [0..23] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 06 2009
(PARI) x='x+O('x^50); Vec((5-6*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Jul 29 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 06 2009
STATUS
approved
Triangle of coefficients of polynomials v(n,x) jointly generated with A210753; see the Formula section.
+10
4
1, 3, 2, 6, 9, 4, 10, 25, 24, 8, 15, 55, 85, 60, 16, 21, 105, 231, 258, 144, 32, 28, 182, 532, 833, 728, 336, 64, 36, 294, 1092, 2241, 2720, 1952, 768, 128, 45, 450, 2058, 5301, 8361, 8280, 5040, 1728, 256, 55, 660, 3630, 11385, 22363, 28610, 23920
OFFSET
1,2
COMMENTS
Column 1: triangular numbers, A000217
Coefficient of v(n,x): 2^(n-1)
Row sums: A035344
Alternating row sums: 1,1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.
Appears to be the reversed row polynomials of A165241 with the unit diagonal removed. If so, the o.g.f. is [1-(1+y)x]/[1-2(1+y)x+(1+y)x^2] - 1/(1-x) and the triangular matrix here may be formed by adding each column of the matrix of A056242, presented in the example section with the additional zeros, to its subsequent column with the first row ignored. - Tom Copeland, Jan 09 2017
FORMULA
u(n,x)=(x+1)*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=(x+1)*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
EXAMPLE
First five rows:
1
3....2
6....9....4
10...25...24...8
15...55...85...60...16
First three polynomials v(n,x): 1, 3 + 2x, 6 + 9x +4x^2
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := (x + 1)*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210753 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210754 *)
Table[u[n, x] /. x -> 1, {n, 1, z}] (* A007070 *)
Table[v[n, x] /. x -> 1, {n, 1, z}] (* A035344 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 25 2012
STATUS
approved
Power floor-ceiling sequence of 2+sqrt(2).
+10
4
3, 11, 37, 127, 433, 1479, 5049, 17239, 58857, 200951, 686089, 2342455, 7997641, 27305655, 93227337, 318298039, 1086737481, 3710353847, 12667940425, 43251054007, 147668335177, 504171232695, 1721348260425, 5877050576311, 20065505784393, 68507921984951
OFFSET
0,1
COMMENTS
See A214992 for a discussion of power floor-ceiling sequence and power floor-ceiling function, p2(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(2), and the limit p2(r) = (11 + 8*sqrt(2))/7.
From Greg Dresden, Jun 02 2020: (Start)
a(n) is the number of ways to tile a 2 X (n+1) strip, with one extra square at the top left corner, using 1 X 1 squares, 2 X 2 squares, and 1 X 2 dominoes (either horizontal or vertical). This picture shows a(1) = 11.
_ _ _ _ _ _ _ _ _ _ _
|_|_ |_|_ | |_ |_|_ |_|_ |_|_ |_|_ | |_ | |_ |_|_ |_|_
|_|_| | | |_|_| | |_| |_| | |___| |_|_| |_|_| |_| | |___| | | |
|_|_| |___| |_|_| |_|_| |_|_| |_|_| |___| |___| |_|_| |___| |_|_|
(End)
FORMULA
a(n) = ceiling(x*a(n-1)) if n is odd, a(n) = floor(x*a(n-1)) if n is even, where x = 2+sqrt(2) and a(0) = floor(x).
a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-3).
G.f.: (3 + 2*x - 2*x^2)/(1 - 3*x - 2*x^2 + 2*x^3).
a(n) = (1/7)*((-1)^(1+n) + (11-8*sqrt(2))*(2-sqrt(2))^n + (2+sqrt(2))^n*(11+8*sqrt(2))). - Colin Barker, Nov 13 2017
EXAMPLE
a(0) = floor(r) = 3, where r = 2+sqrt(2).
a(1) = ceiling(3*r) = 11; a(2) = floor(11*r) = 37.
MATHEMATICA
x = 2 + Sqrt[2]; z = 30; (* z = # terms in sequences *)
z1 = 100; (* z1 = # digits in approximations *)
f[x_] := Floor[x]; c[x_] := Ceiling[x];
p1[0] = f[x]; p2[0] = f[x]; p3[0] = c[x]; p4[0] = c[x];
p1[n_] := f[x*p1[n - 1]]
p2[n_] := If[Mod[n, 2] == 1, c[x*p2[n - 1]], f[x*p2[n - 1]]]
p3[n_] := If[Mod[n, 2] == 1, f[x*p3[n - 1]], c[x*p3[n - 1]]]
p4[n_] := c[x*p4[n - 1]]
Table[p1[n], {n, 0, z}] (* A007052 *)
Table[p2[n], {n, 0, z}] (* A214996 *)
Table[p3[n], {n, 0, z}] (* A214997 *)
Table[p4[n], {n, 0, z}] (* A007070 *)
PROG
(PARI) Vec((3 + 2*x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((3+2*x-2*x^2)/(1-3*x-2*x^2+2*x^3))) // G. C. Greubel, Feb 02 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 10 2012
STATUS
approved
Power ceiling-floor sequence of 2+sqrt(2).
+10
4
4, 13, 45, 153, 523, 1785, 6095, 20809, 71047, 242569, 828183, 2827593, 9654007, 32960841, 112535351, 384219721, 1311808183, 4478793289, 15291556791, 52208640585, 178251448759, 608588513865, 2077851157943, 7094227604041, 24221208100279, 82696377193033
OFFSET
0,1
COMMENTS
See A214992 for a discussion of power ceiling-floor sequence and power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(2), and the limit p3(r) = 3.8478612632206289...
a(n) is the number of words over {0,1,2,3} of length n+1 that avoid 23, 32, and 33. As an example, a(2)=45 corresponds to the 45 such words of length 3; these are all 64 words except for the 19 prohibited cases which are 320, 321, 322, 323, 230, 231, 232, 233, 330, 331, 332, 333, 023, 123, 223, 032, 132, 033, 133. - Greg Dresden and Mina BH Arsanious, Aug 09 2023
FORMULA
a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x = 2+sqrt(2) and a(0) = ceiling(x).
a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-3).
G.f.: (4 + x - 2*x^2)/(1 - 3*x - 2*x^2 + 2*x^3).
a(n) = (1/14)*(2*(-1)^n + (27-19*sqrt(2))*(2-sqrt(2))^n + (2+sqrt(2))^n*(27+19*sqrt(2))). - Colin Barker, Nov 13 2017
EXAMPLE
a(0) = ceiling(r) = 4, where r = 2+sqrt(2);
a(1) = floor(4*r) = 13; a(2) = ceiling(13*r) = 45.
MATHEMATICA
(See A214996.)
CoefficientList[Series[(4+x-2*x^2)/(1-3*x-2*x^2+2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Feb 01 2018 *)
PROG
(PARI) Vec((4 + x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ Colin Barker, Nov 13 2017
(Magma) Q:=Rationals(); R<x>:=PowerSeriesRing(Q, 40); Coefficients(R!((4 +x-2*x^2)/(1-3*x-2*x^2+2*x^3))) // G. C. Greubel, Feb 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 10 2012
STATUS
approved
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - 2*k*x + k*x^2).
+10
4
1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 14, 4, 0, 1, 8, 33, 48, 5, 0, 1, 10, 60, 180, 164, 6, 0, 1, 12, 95, 448, 981, 560, 7, 0, 1, 14, 138, 900, 3344, 5346, 1912, 8, 0, 1, 16, 189, 1584, 8525, 24960, 29133, 6528, 9, 0, 1, 18, 248, 2548, 18180, 80750, 186304, 158760, 22288, 10, 0
OFFSET
0,5
FORMULA
T(0,k) = 1, T(1,k) = 2*k and T(n,k) = k*(2*T(n-1,k) - T(n-2,k)) for n > 1.
T(n,k) = Sum_{j=0..floor(n/2)} (2*k)^(n-j) * (-1/2)^j * binomial(n-j,j) = Sum_{j=0..n} (2*k)^j * (-1/2)^(n-j) * binomial(j,n-j).
T(n,k) = sqrt(k)^n * U(n, sqrt(k)) where U(n, x) is a Chebyshev polynomial of the second kind.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
0, 3, 14, 33, 60, 95, ...
0, 4, 48, 180, 448, 900, ...
0, 5, 164, 981, 3344, 8525, ...
0, 6, 560, 5346, 24960, 80750, ...
MAPLE
T:= (n, k)-> (<<0|1>, <-k|2*k>>^(n+1))[1, 2]:
seq(seq(T(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 01 2021
MATHEMATICA
T[n_, k_] := Sum[If[k == j == 0, 1, (2*k)^j] * (-2)^(j - n) * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 27 2021 *)
PROG
(PARI) T(n, k) = sum(j=0, n\2, (2*k)^(n-j)*(-2)^(-j)*binomial(n-j, j));
(PARI) T(n, k) = sum(j=0, n, (2*k)^j*(-2)^(j-n)*binomial(j, n-j));
(PARI) T(n, k) = round(sqrt(k)^n*polchebyshev(n, 2, sqrt(k)));
CROSSREFS
Columns 0..5 give A000007, A000027(n+1), A007070, A138395, A099156(n+1), A190987(n+1).
Rows 0..2 give A000012, A005843, A033991.
Main diagonal gives (-1) * A109520(n+1).
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Mar 01 2021
STATUS
approved

Search completed in 0.036 seconds