[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a006992 -id:a006992
     Sort: relevance | references | number | modified | created      Format: long | short | data
Ramanujan primes R_n: a(n) is the smallest number such that if x >= a(n), then pi(x) - pi(x/2) >= n, where pi(x) is the number of primes <= x.
+10
148
2, 11, 17, 29, 41, 47, 59, 67, 71, 97, 101, 107, 127, 149, 151, 167, 179, 181, 227, 229, 233, 239, 241, 263, 269, 281, 307, 311, 347, 349, 367, 373, 401, 409, 419, 431, 433, 439, 461, 487, 491, 503, 569, 571, 587, 593, 599, 601, 607, 641, 643, 647, 653, 659
OFFSET
1,1
COMMENTS
Referring to his proof of Bertrand's postulate, Ramanujan states a generalization: "From this we easily deduce that pi(x) - pi(x/2) >= 1, 2, 3, 4, 5, ..., if x >= 2, 11, 17, 29, 41, ..., respectively." Since the a(n) are prime (by their minimality), I call them "Ramanujan primes."
See the additional references and links mentioned in A143227.
2n log 2n < a(n) < 4n log 4n for n >= 1, and prime(2n) < a(n) < prime(4n) if n > 1. Also, a(n) ~ prime(2n) as n -> infinity.
Shanta Laishram has proved that a(n) < prime(3n) for all n >= 1.
a(n) - 3n log 3n is sometimes positive, but negative with increasing frequency as n grows since a(n) ~ 2n log 2n. There should be a constant m such that for n >= m we have a(n) < 3n log 3n.
A good approximation to a(n) = R_n for n in [1..1000] is A162996(n) = round(k*n * (log(k*n)+1)), with k = 2.216 determined empirically from the first 1000 Ramanujan primes, which approximates the {k*n}-th prime number which in turn approximates the n-th Ramanujan prime and where abs(A162996(n) - R_n) < 2 * sqrt(A162996(n)) for n in [1..1000]. Since R_n ~ prime(2n) ~ 2n * (log(2n)+1) ~ 2n * log(2n), while A162996(n) ~ prime(k*n) ~ k*n * (log(k*n)+1) ~ k*n * log(k*n), A162996(n) / R_n ~ k/2 = 2.216/2 = 1.108 which implies an asymptotic overestimate of about 10% (a better approximation would need k to depend on n and be asymptotic to 2). - Daniel Forgues, Jul 29 2009
Let p_n be the n-th prime. If p_n >= 3 is in the sequence, then all integers (p_n+1)/2, (p_n+3)/2, ..., (p_(n+1)-1)/2 are composite numbers. - Vladimir Shevelev, Aug 12 2009
Denote by q(n) the prime which is the nearest from the right to a(n)/2. Then there exists a prime between a(n) and 2q(n). Converse, generally speaking, is not true, i.e., there exist primes outside the sequence, but possess such property (e.g., 109). - Vladimir Shevelev, Aug 14 2009
The Mathematica program FasterRamanujanPrimeList uses Laishram's result that a(n) < prime(3n).
See sequence A164952 for a generalization we call a Ramanujan k-prime. - Vladimir Shevelev, Sep 01 2009
From Jonathan Sondow, May 22 2010: (Start)
About 46% of primes < 19000 are Ramanujan primes. About 78% of the lesser of twin primes < 19000 are Ramanujan primes.
About 15% of primes < 19000 are the lesser of twin primes. About 26% of Ramanujan primes < 19000 are the lesser of twin primes.
A reason for the jumps is in Section 7 of "Ramanujan primes and Bertrand's postulate" and in Section 4 of "Ramanujan Primes: Bounds, Runs, Twins, and Gaps". (See the arXiv link for a corrected version of Table 1.)
See Shapiro 2008 for an exposition of Ramanujan's proof of his generalization of Bertrand's postulate. (End)
The (10^n)-th R prime: 2, 97, 1439, 19403, 242057, 2916539, 34072993, 389433437, .... - Robert G. Wilson v, May 07 2011, updated Aug 02 2012
The number of R primes < 10^n: 1, 10, 72, 559, 4459, 36960, 316066, 2760321, .... - Robert G. Wilson v, Aug 02 2012
a(n) = R_n = R_{0.5,n} in "Generalized Ramanujan Primes."
All Ramanujan primes are in A164368. - Vladimir Shevelev, Aug 30 2011
If n tends to infinity, then limsup(a(n) - A080359(n-1)) = infinity; conjecture: also limsup(a(n) - A080359(n)) = infinity (cf. A182366). - Vladimir Shevelev, Apr 27 2012
Or the largest prime x such that the number of primes in (x/2,x] equals n. This equivalent definition underlines an important analogy between Ramanujan and Labos primes (cf. A080359). - Vladimir Shevelev, Apr 29 2012
Research questions on R_n - prime(2n) are at A233739, and on n-Ramanujan primes at A225907. - Jonathan Sondow, Dec 16 2013
The questions on R_n - prime(2n) in A233739 have been answered by Christian Axler in "On generalized Ramanujan primes". - Jonathan Sondow, Feb 13 2014
Srinivasan's Lemma (2014): prime(k-n) < prime(k)/2 if R_n = prime(k) and n > 1. Proof: By the minimality of R_n, the interval (prime(k)/2,prime(k)] contains exactly n primes and so prime(k-n) < prime(k)/2. - Jonathan Sondow, May 10 2014
For some n and k, we see that A168421(k) = a(n) so as to form a chain of primes similar to a Cunningham chain. For example (and the first example), A168421(2) = 7, links a(2) = 11 = A168421(3), links a(3) = 17 = A168421(4), links a(4) = 29 = A168421(6), links a(6) = 47. Note that the links do not have to be of a form like q = 2*p+1 or q = 2*p-1. - John W. Nicholson, Feb 22 2015
Extending Sondow's 2010 comments: About 48% of primes < 10^9 are Ramanujan primes. About 76% of the lesser of twin primes < 10^9 are Ramanujan primes. - Dana Jacobsen, Sep 06 2015
Sondow, Nicholson, and Noe's 2011 conjecture that pi(R_{m*n}) <= m*pi(R_n) for m >= 1 and n >= N_m (see A190413, A190414) was proved for n > 10^300 by Shichun Yang and Alain Togbé in 2015. - Jonathan Sondow, Dec 01 2015
Berliner, Dean, Hook, Marr, Mbirika, and McBee (2016) prove in Theorem 18 that the graph K_{m,n} is prime for n >= R_{m-1}-m; see A291465. - Jonathan Sondow, May 21 2017
Okhotin (2012) uses Ramanujan primes to prove Lemma 8 in "Unambiguous finite automata over a unary alphabet." - Jonathan Sondow, May 30 2017
Sepulcre and Vidal (2016) apply Ramanujan primes in Remark 9 of "On the non-isolation of the real projections of the zeros of exponential polynomials." - Jonathan Sondow, May 30 2017
Axler and Leßmann (2017) compute the first k-Ramanujan prime for k >= 1 + epsilon; see A277718, A277719, A290394. - Jonathan Sondow, Jul 30 2017
REFERENCES
Srinivasa Ramanujan, Collected Papers of Srinivasa Ramanujan (Ed. G. H. Hardy, S. Aiyar, P. Venkatesvara and B. M. Wilson), Amer. Math. Soc., Providence, 2000, pp. 208-209.
Harold N. Shapiro, Ramanujan's idea, Section 9.3B in Introduction to the Theory of Numbers, Dover, 2008.
LINKS
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, arXiv:1108.0475 [math.NT], 2011.
N. Amersi, O. Beckwith, S. J. Miller, R. Ronan, J. Sondow, Generalized Ramanujan primes, Combinatorial and Additive Number Theory, Springer Proc. in Math. & Stat., CANT 2011 and 2012, Vol. 101 (2014), 1-13.
Christian Axler, Über die Primzahl-Zählfunktion, die n-te Primzahl und verallgemeinerte Ramanujan-Primzahlen, Ph.D. thesis 2013, in German, English summary.
Christian Axler, On generalized Ramanujan primes, arXiv:1401.7179 [math.NT], 2014.
Christian Axler, On generalized Ramanujan primes, Ramanujan J. 39 (1) (2016) 1-30.
Christian Axler and Thomas Leßmann, An explicit upper bound for the first k-Ramanujan prime, arXiv:1504.05485 [math.NT], 2015.
Christian Axler and Thomas Leßmann, On the first k-Ramanujan prime, Amer. Math. Monthly, 124 (2017), 642-646.
Adam H. Berliner, N. Dean, J. Hook, A. Marr, A. Mbirika, C. McBee, Coprime and prime labelings of graphs, arXiv preprint arXiv:1604.07698 [math.CO], 2016; Journal of Integer Sequences, Vol. 19 (2016), #16.5.8.
Paul Erdős, A theorem of Sylvester and Schur, J. London Math. Soc., 9 (1934), 282-288.
Peter Hegarty, Why should one expect to find long runs of (non)-Ramanujan primes?, arXiv:1201.3847 [math.NT], 2012.
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
Shanta Laishram, On a conjecture on Ramanujan primes, Int. J. Number Theory, 6 (2010), 1869-1873.
Catherine Lee, Minimum coprime graph labelings, arXiv:1907.12670 [math.CO], 2019.
Jaban Meher and M. Ram Murty, Ramanujan's proof of Bertrand's postulate, Amer. Math. Monthly, Vol. 120, No. 7 (2013), pp. 650-653.
Alexander Okhotin, Unambiguous finite automata over a unary alphabet, Inf. Comput., 212 (2012), 15-36.
Murat Baris Paksoy, Derived Ramanujan primes: R'_n, arXiv:1210.6991 [math.NT], 2012.
PlanetMath, Ramanujan prime
Srinivasa Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
Juan Matias Sepulcre and Tomás Vidal, On the non-isolation of the real projections of the zeros of exponential polynomials, J. Math. Anal. Appl., 437 (2016) No. 1, 513-525.
Vladimir Shevelev, On critical small intervals containing primes, arXiv:0908.2319 [math.NT], 2009.
Vladimir Shevelev, Ramanujan and Labos primes, their generalizations and classifications of primes, arXiv:0909.0715 [math.NT], 2009-2011.
Vladimir Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv:1212.2785
Jonathan Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-2010.
Jonathan Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635. Zentralblatt review.
Jonathan Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT] 2011; J. Integer Seq. 14 (2011) Article 11.6.2.
Jonathan Sondow, Ramanujan Prime, Eric Weisstein's MathWorld.
Jonathan Sondow and E. Weisstein, Bertrand's Postulate, MathWorld.
Anitha Srinivasan, An upper bound for Ramanujan primes, Integers, 14 (2014), #A19.
Anitha Srinivasan and John W. Nicholson, An improved upper bound for Ramanujan primes, Integers, 15 (2015), #A52.
Wikipedia, Ramanujan prime.
Shichun Yang and Alain Togbé, On the estimates of the upper and lower bounds of Ramanujan primes, Ramanujan J., online 14 August 2015, 1-11.
FORMULA
a(n) = 1 + max{k: pi(k) - pi(k/2) = n - 1}.
a(n) = A080360(n-1) + 1 for n > 1.
a(n) >= A080359(n). - Vladimir Shevelev, Aug 20 2009
A193761(n) <= a(n) <= A193880(n).
a(n) = 2*A084140(n) - 1, for n > 1. - Jonathan Sondow, Dec 21 2012
a(n) = prime(2n) + A233739(n) = (A233822(n) + a(n+1))/2. - Jonathan Sondow, Dec 16 2013
a(n) = max{prime p: pi(p) - pi(p/2) = n} (see Shevelev 2012). - Jonathan Sondow, Mar 23 2016
a(n) = A000040(A179196(n)). - R. J. Mathar, Sep 21 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = A190303. - Amiram Eldar, Nov 20 2020
EXAMPLE
a(1) = 2 is Bertrand's postulate: pi(x) - pi(x/2) >= 1 for all x >= 2.
a(2) = 11 because a(2) < 8 log 8 < 17 and pi(n) - pi(n/2) > 1 for n = 16, 15, ..., 11 but pi(10) - pi(5) = 1.
Consider a(9)=71. Then the nearest prime > 71/2 is 37, and between a(9) and 2*37, that is, between 71 and 74, there exists a prime (73). - Vladimir Shevelev, Aug 14 2009 [corrected by Jonathan Sondow, Jun 17 2013]
MAPLE
A104272 := proc(n::integer)
local R;
if n = 1 then
return 2;
end if;
R := ithprime(3*n-1) ; # upper limit Laishram's thrm Thrm 3 arXiv:1105.2249
while true do
if A056171(R) = n then # Defn. 1. of Shevelev JIS 14 (2012) 12.1.1
return R ;
end if;
R := prevprime(R) ;
end do:
end proc:
seq(A104272(n), n=1..200) ; # slow downstream search <= p(3n-1) R. J. Mathar, Sep 21 2017
MATHEMATICA
(RamanujanPrimeList[n_] := With[{T=Table[{k, PrimePi[k]-PrimePi[k/2]}, {k, Ceiling[N[4*n*Log[4*n]]]}]}, Table[1+First[Last[Select[T, Last[ # ]==i-1&]]], {i, 1, n}]]; RamanujanPrimeList[54]) (* Jonathan Sondow, Aug 15 2009 *)
(FasterRamanujanPrimeList[n_] := With[{T=Table[{k, PrimePi[k]-PrimePi[k/2]}, {k, Prime[3*n]}]}, Table[1+First[Last[Select[T, Last[ # ]==i-1&]]], {i, 1, n}]]; FasterRamanujanPrimeList[54])
nn=1000; R=Table[0, {nn}]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s<nn, R[[s+1]]=k], {k, Prime[3*nn]}]; R=R+1 (* T. D. Noe, Nov 15 2010 *)
PROG
(Perl) use ntheory ":all"; my $r = ramanujan_primes(1000); say "[@$r]"; # Dana Jacobsen, Sep 06 2015
(PARI) ramanujan_prime_list(n) = {my(L=vector(n), s=0, k=1); for(k=1, prime(3*n)-1, if(isprime(k), s++); if(k%2==0 && isprime(k/2), s--); if(s<n, L[s+1] = k+1)); L} \\ Satish Bysany, Mar 02 2017
CROSSREFS
Cf. A006992 (Bertrand primes), A056171 (pi(n) - pi(n/2)).
Cf. A162996 (Round(kn * (log(kn)+1)), with k = 2.216 as an approximation of R_n = n-th Ramanujan Prime).
Cf. A163160 (Round(kn * (log(kn)+1)) - R_n, where k = 2.216 and R_n = n-th Ramanujan prime).
Cf. A178127 (Lesser of twin Ramanujan primes), A178128 (Lesser of twin primes if it is a Ramanujan prime).
Cf. A181671 (number of Ramanujan primes less than 10^n).
Cf. A174635 (non-Ramanujan primes), A174602, A174641 (runs of Ramanujan and non-Ramanujan primes).
Cf. A189993, A189994 (lengths of longest runs).
Cf. A190124 (constant of summation: 1/a(n)^2).
Cf. A192820 (2- or derived Ramanujan primes R'_n), A192821, A192822, A192823, A192824, A225907.
Cf. A193761 (0.25-Ramanujan primes), A193880 (0.75-Ramanujan primes).
Cf. A185004 - A185007 ("modular" Ramanujan primes).
Not to be confused with the Ramanujan numbers or Ramanujan tau function, A000594.
KEYWORD
nonn,nice
AUTHOR
Jonathan Sondow, Feb 27 2005
STATUS
approved
Number of primes between n and 2n exclusive.
+10
58
0, 1, 1, 2, 1, 2, 2, 2, 3, 4, 3, 4, 3, 3, 4, 5, 4, 4, 4, 4, 5, 6, 5, 6, 6, 6, 7, 7, 6, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 9, 10, 9, 9, 10, 10, 9, 9, 10, 10, 11, 12, 11, 12, 13, 13, 14, 14, 13, 13, 12, 12, 12, 13, 13, 14, 13, 13, 14, 15, 14, 14, 13, 13, 14, 15, 15
OFFSET
1,4
COMMENTS
See the additional references and links mentioned in A143227. - Jonathan Sondow, Aug 03 2008
a(A060756(n)) = n and a(m) <> n for m < A060756(n). - Reinhard Zumkeller, Jan 08 2012
For prime n conjecturally a(n) = A226859(n). - Vladimir Shevelev, Jun 27 2013
The number of partitions of 2n+2 into exactly two parts where the first part is a prime strictly less than 2n+1. - Wesley Ivan Hurt, Aug 21 2013
REFERENCES
M. Aigner and C. M. Ziegler, Proofs from The Book, Chapter 2, Springer NY 2001.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..20000 [First 1000 terms from T. D. Noe]
C. K. Caldwell, The Prime Glossary, Bertrand's postulate
R. Chapman, Bertrand postulate [Broken link]
Math Olympiads, Bertrand's Postulate [Broken link]
S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
Vladimir Shevelev, Ramanujan and Labos Primes, Their Generalizations, and Classifications of Primes, Journal of Integer Sequences, Vol. 15 (2012), Article 12.5.4
M. Slone, PlanetMath.org, Proof of Bertrand's conjecture
Jonathan Sondow and Eric Weisstein, Bertrand's Postulate, World of Mathematics
Dr. Wilkinson, The Math Forum, Erdos' Proof
Wolfram Research, Bertrand hypothesis
FORMULA
a(n) = Sum_{k=1..n-1} A010051(n+k). - Reinhard Zumkeller, Dec 03 2009
a(n) = pi(2n-1) - pi(n). - Wesley Ivan Hurt, Aug 21 2013
a(n) = Sum_{k=(n^2-n+2)/2..(n^2+n-2)/2} A010051(A128076(k)). - Wesley Ivan Hurt, Jan 08 2022
EXAMPLE
a(35)=8 since eight consecutive primes (37,41,43,47,53,59,61,67) are located between 35 and 70.
MAPLE
a := proc(n) local counter, i; counter := 0; from i from n+1 to 2*n-1 do if isprime(i) then counter := counter +1; fi; od; return counter; end:
with(numtheory); seq(pi(2*k-1)-pi(k), k=1..100); # Wesley Ivan Hurt, Aug 21 2013
MATHEMATICA
a[n_]:=PrimePi[2n-1]-PrimePi[n]; Table[a[n], {n, 1, 84}] (* Jean-François Alcover, Mar 20 2011 *)
PROG
(PARI) { for (n=1, 1000, write("b060715.txt", n, " ", primepi(2*n - 1) - primepi(n)); ) } \\ Harry J. Smith, Jul 10 2009
(Haskell)
a060715 n = sum $ map a010051 [n+1..2*n-1] -- Reinhard Zumkeller, Jan 08 2012
(Magma) [0] cat [#PrimesInInterval(n+1, 2*n-1): n in [2..80]]; // Bruno Berselli, Sep 05 2012
(Python) from sympy import primerange as pr
def A060715(n): return len(list(pr(n+1, 2*n))) # Karl-Heinz Hofmann, May 05 2022
CROSSREFS
Related sequences:
Primes (p) and composites (c): A000040, A002808, A000720, A065855.
Primes between p(n) and 2*p(n): A063124, A070046; between c(n) and 2*c(n): A376761; between n and 2*n: A035250, A060715, A077463, A108954.
Composites between p(n) and 2*p(n): A246514; between c(n) and 2*c(n): A376760; between n and 2*n: A075084, A307912, A307989, A376759.
KEYWORD
nonn,easy
AUTHOR
Lekraj Beedassy, Apr 25 2001
EXTENSIONS
Corrected by Dug Eichelberger (dug(AT)mit.edu), Jun 04 2001
More terms from Larry Reeves (larryr(AT)acm.org), Jun 05 2001
STATUS
approved
a(1) = 2; a(n) is smallest prime > 2*a(n-1).
+10
34
2, 5, 11, 23, 47, 97, 197, 397, 797, 1597, 3203, 6421, 12853, 25717, 51437, 102877, 205759, 411527, 823117, 1646237, 3292489, 6584983, 13169977, 26339969, 52679969, 105359939, 210719881, 421439783, 842879579, 1685759167, 3371518343
OFFSET
1,1
COMMENTS
It appears that lim_{n->infinity} a(n)/2^n exists and is approximately 1.569985585.... - Franklin T. Adams-Watters, Nov 11 2011
This is a B_2 sequence. - Thomas Ordowski, Sep 23 2014 See the link.
Conjecture: lim_{n->infinity} a(n)/A006992(n) = 5.1648264... - Thomas Ordowski, Apr 05 2015
LINKS
Zak Seidov and Michael De Vlieger, Table of n, a(n) for n = 1..1000 (First 100 terms from Zak Seidov)
Eric Weisstein's World of Mathematics, B_2-Sequence.
FORMULA
a(n+1) = A060264(a(n)). - Peter Munn, Oct 23 2017
MAPLE
A055496 := proc(n) option remember; if n=1 then 2 else nextprime(2*A055496(n-1)); fi; end;
MATHEMATICA
NextPrim[n_Integer] := Block[ {k = n + 1}, While[ !PrimeQ[k], k++ ]; Return[k]]; a[1] = 2; a[n_] := NextPrim[ 2*a[n - 1]]; Table[ a[n], {n, 1, 31} ]
a[1]=2; a[n_]:=a[n]=Prime[PrimePi[2*a[n-1]]+1]; Table[a[n], {n, 40}] (* Zak Seidov, Feb 16 2006 *)
NestList[ NextPrime[2*# ]&, 2, 100] (* Zak Seidov, Jul 28 2009 *)
PROG
(PARI) print1(a=2); for(n=2, 20, print1(", ", a=nextprime(a+a))) \\ Charles R Greathouse IV, Jul 19 2011
CROSSREFS
Values of a(n)-2*a(n-1) in A163469. - Zak Seidov, Jul 28 2009
Cf. A065545 (with a(1)=3). - Zak Seidov, Feb 04 2016
Row 1 of A229608.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 07 2000
EXTENSIONS
Mathematica updated by Jean-François Alcover, Jun 19 2013
STATUS
approved
Mills primes.
+10
16
2, 11, 1361, 2521008887, 16022236204009818131831320183, 4113101149215104800030529537915953170486139623539759933135949994882770404074832568499
OFFSET
1,1
COMMENTS
Mills showed that there is a number A > 1 but not an integer, such that floor( A^(3^n) ) is a prime for all n = 1, 2, 3, ... A is approximately 1.306377883863... (see A051021).
a(1) = 2 and (for n > 1) a(n) is least prime > a(n-1)^3. - Jonathan Vos Post, May 05 2006, corrected by M. F. Hasler, Sep 11 2024
The name refers to the American mathematician William Harold Mills (1921-2007). - Amiram Eldar, Jun 23 2021
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 8.
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.13, p. 130.
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..8
Chris K. Caldwell and Yuanyou Chen, Determining Mills' Constant and a Note on Honaker's Problem, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.1.
Steven R. Finch, Mills' Constant. [Broken link]
Steven R. Finch, Mills' Constant. [From the Wayback machine]
Dylan Fridman, Juli Garbulsky, Bruno Glecer, James Grime and Massi Tron Florentin, A Prime-Representing Constant, Amer. Math. Monthly, Vol. 126, No. 1 (2019), pp. 72-73; ResearchGate link, arXiv preprint, arXiv:2010.15882 [math.NT], 2020.
James Grime and Brady Haran, Awesome Prime Number Constant, Numberphile video, 2013.
Brian Hayes, Pumping the Primes, bit-player, Aug 19 2015.
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
William H. Mills, A prime-representing function, Bull. Amer. Math. Soc., Vol. 53, No. 6 (1947), p. 604; Errata, ibid., Vol. 53, No 12 (1947), p. 1196.
Simon Plouffe, The calculation of p(n) and pi(n), arXiv:2002.12137 [math.NT], 2020.
László Tóth, A Variation on Mills-Like Prime-Representing Functions, arXiv:1801.08014 [math.NT], 2018.
Juan L. Varona, A Couple of Transcendental Prime-Representing Constants, arXiv:2012.11750 [math.NT], 2020.
Eric Weisstein's World of Mathematics, Mills' Prime.
Eric Weisstein's World of Mathematics, Prime Formulas.
Eric W. Weisstein, Table of n, a(n) for n = 1..13.
FORMULA
a(1) = 2; a(n) is least prime > a(n-1)^3. - Jonathan Vos Post, May 05 2006
EXAMPLE
a(3) = 1361 = 11^3 + 30 = a(2)^3 + 30 and there is no smaller k such that a(2)^3 + k is prime. - Jonathan Vos Post, May 05 2006
MAPLE
floor(A^(3^n), n=1..10); # A is Mills's constant: 1.306377883863080690468614492602605712916784585156713644368053759966434.. (A051021).
MATHEMATICA
p = 1; Table[p = NextPrime[p^3], {6}] (* T. D. Noe, Sep 24 2008 *)
NestList[NextPrime[#^3] &, 2, 5] (* Harvey P. Dale, Feb 28 2012 *)
PROG
(PARI) a(n)=if(n==1, 2, nextprime(a(n-1)^3)) \\ Charles R Greathouse IV, Jun 23 2017
(PARI) apply( {A051254(n, p=2)=while(n--, p=nextprime(p^3)); p}, [1..6]) \\ M. F. Hasler, Sep 11 2024
CROSSREFS
Cf. A224845 (integer lengths of Mills primes).
Cf. A108739 (sequence of offsets b_n associated with Mills primes).
Cf. A051021 (decimal expansion of Mills constant).
KEYWORD
nonn,nice,changed
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, May 05 2007
STATUS
approved
a(1)=1, a(2)=2, for n > 2 if a(n-1) is prime, then a(n) = 2*a(n-1), otherwise a(n) = a(n-1) - 1.
+10
14
1, 2, 4, 3, 6, 5, 10, 9, 8, 7, 14, 13, 26, 25, 24, 23, 46, 45, 44, 43, 86, 85, 84, 83, 166, 165, 164, 163, 326, 325, 324, 323, 322, 321, 320, 319, 318, 317, 634, 633, 632, 631, 1262, 1261, 1260, 1259, 2518, 2517, 2516, 2515, 2514, 2513, 2512, 2511, 2510, 2509, 2508
OFFSET
1,2
COMMENTS
For n >= 3, using Wilson's theorem, a(n) = a(n-1) + (-1)^r*gcd(a(n-1), W), where W = A038507(a(n-1) - 1), and r=1 if gcd(a(n-1), W) = 1 and r=0 otherwise. - Vladimir Shevelev, Aug 07 2009
MAPLE
a[1]:=1: a[2]:=2: for n from 3 to 60 do if isprime(a[n-1])=true then a[n]:=2*a[n-1] else a[n]:=a[n-1]-1 fi od: seq(a[n], n=1..60); # Emeric Deutsch, Apr 02 2006
CROSSREFS
KEYWORD
nonn
AUTHOR
Rodolfo Kurchan, Mar 26 2006
EXTENSIONS
More terms from Emeric Deutsch, Apr 02 2006
STATUS
approved
a(n) = largest prime < 2*prime(n).
+10
13
3, 5, 7, 13, 19, 23, 31, 37, 43, 53, 61, 73, 79, 83, 89, 103, 113, 113, 131, 139, 139, 157, 163, 173, 193, 199, 199, 211, 211, 223, 251, 257, 271, 277, 293, 293, 313, 317, 331, 337, 353, 359, 379, 383, 389, 397, 421, 443, 449, 457, 463, 467, 479, 499, 509, 523
OFFSET
1,1
COMMENTS
Also, smallest member of the first pair of consecutive primes such that between them is a composite number divisible by the n-th prime. - Amarnath Murthy, Sep 25 2002
Except for its initial term, A006992 is a subsequence based on iteration of n -> A151799(2n). The range of this sequence is a subset of A065091. - M. F. Hasler, May 08 2016
FORMULA
a(n) = A007917(A100484(n)). - R. J. Mathar, May 08 2016
EXAMPLE
n=18: p(18)=61, so a(18) is the largest prime below 2*61=122, which is 113.
MAPLE
with(numtheory):
A059788 := proc(n)
prevprime(2*ithprime(n)) ;
end proc:
seq(A059788(n), n=1..50) ; # R. J. Mathar, May 08 2016
MATHEMATICA
a[n_] := Prime[PrimePi[2Prime[n]]]
NextPrime[2*Prime[Range[100]], -1] (* Zak Seidov, May 08 2016 *)
PROG
(PARI) a(n) = precprime(2*prime(n)); \\ Michel Marcus, May 08 2016
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 22 2001
STATUS
approved
First differences of A116533.
+10
13
1, 2, -1, 3, -1, 5, -1, -1, -1, 7, -1, 13, -1, -1, -1, 23, -1, -1, -1, 43, -1, -1, -1, 83, -1, -1, -1, 163, -1, -1, -1, -1, -1, -1, -1, -1, -1, 317, -1, -1, -1, 631, -1, -1, -1, 1259, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 2503, -1, -1, -1, 5003, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
OFFSET
1,2
COMMENTS
Ignoring the +-1 terms, we obtain the sequence of Bertrand's primes A006992. If we consider sequences A_i={a_i(n)}, i=1,2,... with the same constructions as A116533, but with initials a_1(1)=2, a_2(1)=11, a_3(1)=17,..., a_m(1)=A164368(m),..., then the union of A_1,A_2,... contains all primes.
MAPLE
A116533 := proc(n) option remember; if n <=2 then n; else if isprime(procname(n-1)) then 2*procname(n-1) ; else procname(n-1)-1 ; end if; end if; end proc:
A163961 := proc(n) A116533(n+1)-A116533(n) ; end proc: # R. J. Mathar, Sep 03 2011
MATHEMATICA
Differences@ Prepend[NestList[If[PrimeQ@ #, 2 #, # - 1] &, 2, 90], 1] (* Michael De Vlieger, Dec 06 2018 *)
PROG
(PARI) a116533(n) = if(n==1, 1, if(n==2, 2, if(ispseudoprime(a116533(n-1)), 2*a116533(n-1), a116533(n-1)-1)))
a(n) = a116533(n+1)-a116533(n) \\ Felix Fröhlich, Dec 06 2018
(PARI) lista(nn) = {va = vector(nn); va[1] = 1; va[2] = 2; for (n=3, nn, va[n] = if (isprime(va[n-1]), 2*va[n-1], va[n-1]-1); ); vector(nn-1, n, va[n+1] - va[n]); } \\ Michel Marcus, Dec 07 2018
KEYWORD
sign
AUTHOR
Vladimir Shevelev, Aug 07 2009, Aug 14 2009
STATUS
approved
First differences of A080735.
+10
13
1, 2, 1, 5, 1, 11, 1, 23, 1, 47, 1, 1, 1, 97, 1, 1, 1, 197, 1, 1, 1, 397, 1, 1, 1, 797, 1, 1, 1, 1597, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3203, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6421, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12853, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 25717, 1, 1, 1, 51437, 1, 1, 1
OFFSET
1,2
COMMENTS
Ignoring the 1 terms we obtain A055496. If we consider sequences A_i={a_i(n)}, i=1,2,... with the same constructions as A080735, but with initials a_1(1)=2, a_2(1)=3, a_3(1)=13,..., a_m(1)=A080359(m),..., then the union of A_1,A_2,... contains all primes.
LINKS
MAPLE
A080735 := proc(n) option remember; local p ; if n = 1 then 1; else p := procname(n-1) ; if isprime(p) then 2*p; else p+1 ; end if; end if; end proc: A163963 := proc(n) A080735(n+1)-A080735(n) ; end: seq(A163963(n), n=1..100) ; # R. J. Mathar, Nov 05 2009
MATHEMATICA
Differences@ NestList[If[PrimeQ@ #, 2 #, # + 1] &, 1, 87] (* Michael De Vlieger, Dec 06 2018, after Harvey P. Dale at A080735 *)
PROG
(PARI) lista(nn) = {my(va = vector(nn)); va[1] = 1; for (n=2, nn, va[n] = if (isprime(va[n-1]), 2*va[n-1], va[n-1]+1); ); vector(nn-1, n, va[n+1] - va[n]); } \\ Michel Marcus, Dec 06 2018
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Aug 07 2009
EXTENSIONS
More terms from R. J. Mathar, Nov 05 2009
STATUS
approved
Smallest prime after 2*(n-th prime).
+10
10
5, 7, 11, 17, 23, 29, 37, 41, 47, 59, 67, 79, 83, 89, 97, 107, 127, 127, 137, 149, 149, 163, 167, 179, 197, 211, 211, 223, 223, 227, 257, 263, 277, 281, 307, 307, 317, 331, 337, 347, 359, 367, 383, 389, 397, 401, 431, 449, 457, 461, 467, 479, 487, 503, 521
OFFSET
1,1
LINKS
FORMULA
a(n) = A117928(n,1) for n>1. - Reinhard Zumkeller, Apr 03 2006
EXAMPLE
n=17, 18, p(17)=59, p(18)=61, after 118 and 122 the next prime is 127, so a(17)=a(18)=127.
MAPLE
with(numtheory): [seq(nextprime(2*ithprime(k)), k=1..256)];
MATHEMATICA
NextPrime/@(2*Prime[Range[60]]) (* Harvey P. Dale, May 03 2019 *)
PROG
(PARI) a(n) = nextprime(2*prime(n)+1); \\ Michel Marcus, Sep 21 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 22 2001
STATUS
approved
a(n+1) = prevprime(a(n)^2). Largest prime prior to the square of previous prime. Initial value = 2.
+10
6
2, 3, 7, 47, 2207, 4870843, 23725111530599, 562880917139361624513298747, 316834926879648887020732217199607668221645859671769857
OFFSET
1,1
COMMENTS
The next term is too large to show here - see the b-file.
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 1..12
MATHEMATICA
NestList[NextPrime[#^2, -1]&, 2, 10] (* Harvey P. Dale, Jan 16 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 22 2001
EXTENSIONS
Offset and some values corrected by Franklin T. Adams-Watters, Jul 30 2009
STATUS
approved

Search completed in 0.022 seconds