[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A116533 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(1)=1, a(2)=2, for n > 2 if a(n-1) is prime, then a(n) = 2*a(n-1), otherwise a(n) = a(n-1) - 1.
(history; published version)
#11 by Joerg Arndt at Sun Sep 03 13:25:18 EDT 2017
STATUS

proposed

approved

#10 by Jon E. Schoenfield at Sun Sep 03 11:11:08 EDT 2017
STATUS

editing

proposed

#9 by Jon E. Schoenfield at Sun Sep 03 11:11:03 EDT 2017
NAME

a(1)=1, a(2)=2, for n > 2 if a(n-1) is prime, then a(n) = 2*a(n-1), otherwise a(n) = a(n-1) - 1.

COMMENTS

For n >= 3, using Wilson's theorem, a(n) = a(n-1) + (-1)^r*gcd(a(n-1), W), where W = A038507(a(n-1) - 1), and r=1 if gcd(a(n-1), W) = 1 and r=0 otherwise. - Vladimir Shevelev, Aug 07 2009

MAPLE

a[1]:=1: a[2]:=2: for n from 3 to 60 do if isprime(a[n-1])=true then a[n]:=2*a[n-1] else a[n]:=a[n-1]-1 fi od: seq(a[n], n=1..60); - _# _Emeric Deutsch_, Apr 02 2006

CROSSREFS

Cf. A006992, A055496, A080359, A104272, A106108, A132199. [_- _Vladimir Shevelev_, Aug 07 2009]

STATUS

approved

editing

#8 by Joerg Arndt at Thu Aug 08 02:46:01 EDT 2013
STATUS

proposed

approved

#7 by Michel Marcus at Thu Aug 08 02:12:56 EDT 2013
STATUS

editing

proposed

#6 by Michel Marcus at Thu Aug 08 02:12:51 EDT 2013
COMMENTS

Comment from _Vladimir Shevelev_, Aug 07 2009: For n>=3, using Wilson's theorem, a(n)=a(n-1)+ (-1)^r*gcd(a(n-1), W), where W = A038507(a(n-1)-1), and r=1 if gcd(a(n-1),W) = 1 and r=0 otherwise. - _Vladimir Shevelev_, Aug 07 2009

STATUS

approved

editing

#5 by Russ Cox at Sat Mar 31 23:01:28 EDT 2012
COMMENTS

Comment from Vladmir _Vladimir Shevelev (shevelev(AT)bgu.ac.il), _, Aug 07 2009: For n>=3, using Wilson's theorem, a(n)=a(n-1)+ (-1)^r*gcd(a(n-1), W), where W = A038507(a(n-1)-1), and r=1 if gcd(a(n-1),W) = 1 and r=0 otherwise.

CROSSREFS

Cf. A006992, A055496, A080359, A104272, A106108, A132199. [Vladmir _Vladimir Shevelev (shevelev(AT)bgu.ac.il), _, Aug 07 2009]

Discussion
Sat Mar 31
23:01
OEIS Server: https://oeis.org/edit/global/1805
#4 by Russ Cox at Sat Mar 31 20:55:21 EDT 2012
AUTHOR

_Rodolfo Marcelo Kurchan (rkurchan(AT)yahoo.com), _, Mar 26 2006

Discussion
Sat Mar 31
20:55
OEIS Server: https://oeis.org/edit/global/1245
#3 by Russ Cox at Fri Mar 30 17:36:08 EDT 2012
MAPLE

a[1]:=1: a[2]:=2: for n from 3 to 60 do if isprime(a[n-1])=true then a[n]:=2*a[n-1] else a[n]:=a[n-1]-1 fi od: seq(a[n], n=1..60); - _Emeric Deutsch (deutsch(AT)duke.poly.edu), _, Apr 02 2006

EXTENSIONS

More terms from _Emeric Deutsch (deutsch(AT)duke.poly.edu), _, Apr 02 2006

Discussion
Fri Mar 30
17:36
OEIS Server: https://oeis.org/edit/global/173
#2 by N. J. A. Sloane at Sat Oct 02 03:00:00 EDT 2010
NAME

a(1)=1, a(2)=2, for n>2 if a(n-1) is prime, then a(n)=2a2*a(n-1), otherwise a(n)=a(n-1)-1.

COMMENTS

Comment from Vladmir Shevelev (shevelev(AT)bgu.ac.il), Aug 07 2009: For n>=3, using Wilson's theorem, a(n)=a(n-1)+ (-1)^r*gcd(a(n-1), W), where W = A038507(a(n-1)-1), and r=1 if gcd(a(n-1),W) = 1 and r=0 otherwise.

CROSSREFS

Cf. A006992, A055496, A080359, A104272, A106108, A132199. [Vladmir Shevelev (shevelev(AT)bgu.ac.il), Aug 07 2009]

KEYWORD

nonn,new

nonn