editing
proposed
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
proposed
a(n) = (3*binomial(2*n+2,n)+5*binomial(2*n,n+2))/(n+3). - Tani Akinari, Dec 01 2024
(Maxima) a(n):=(3*binomial(2*n+2, n)+5*binomial(2*n, n+2))/(n+3); makelist(a(n), n, 0, 50);
/* Tani Akinari, Dec 01 2024 */
approved
editing
editing
proposed
a(n) = (4*binomial(2*n+3,n)+6*binomial(2*n+1,n+3))/(n+4). - Tani Akinari, Dec 01 2024
(Maxima) a(n):=(4*binomial(2*n+3, n)+6*binomial(2*n+1, n+3))/(n+4); /* Tani Akinari, Dec 01 2024 */
approved
editing
editing
proposed
editing
proposed
For n > 0, a(n) = 3*binomial(2*n-4,n-3)/n+2*binomial(2*n+1,n)/(n+2). - Tani Akinari, Nov 28 2024
(Maxima) a(n):=if n=0 then 1 else 3*binomial(2*n-4, n-3)/n+2*binomial(2*n+1, n)/(n+2);
makelist(a(n), n, 0, 50); /* Tani Akinari, Nov 28 2024 */
approved
editing
editing
proposed
a(n) = numerator(Sum_{k=0..n} binomial(1/2-n, k)*binomial(2*n-1/2, n-k)*Stirling2(n+k, k)*k!/((1-2*n)*(n+k)!)), n>0, a(0)=2. - Tani Akinari, Nov 05 2024
(Maxima) a(n):=if n=0 then 2 else num(sum(binomial(1/2-n, k)*binomial(2*n-1/2, n-k)*stirling2(n+k, k)*k!/((1-2*n)*(n+k)!), k, 0, n)); /* Tani Akinari, Nov 05 2024 */
approved
editing
editing
proposed