[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071723
Expansion of (1+x^2*C^2)*C^4, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
2
1, 4, 15, 54, 192, 682, 2431, 8710, 31382, 113696, 414086, 1515516, 5571750, 20569590, 76228095, 283481670, 1057628550, 3957577800, 14849601090, 55859886420, 210622646520, 795898303668, 3013646759910, 11432740177564, 43448822603452, 165396657221152
OFFSET
0,2
FORMULA
a(n) = (Sum_{k=0..n} (k+1)*(k^2+k+1)*binomial(2*n-k,n))/(n+1). - Vladimir Kruchinin, Sep 28 2011
a(n) = (4*binomial(2*n+3,n)+6*binomial(2*n+1,n+3))/(n+4). - Tani Akinari, Dec 01 2024
MAPLE
a := n -> (2*(2*n + 1)*(11*n^2 + 17*n + 12)*binomial(2*n, n))/((n + 1)*(n + 2)*(n + 3)*(n + 4)): seq(a(n), n = 0..25); # Peter Luschny, Dec 01 2024
PROG
(Maxima) a(n):=sum((k+1)*(k^2+k+1)*binomial(2*n-k, n), k, 0, n)/(n+1); /* Vladimir Kruchinin, Sep 28 2011 */
(Maxima) a(n):=(4*binomial(2*n+3, n)+6*binomial(2*n+1, n+3))/(n+4); /* Tani Akinari, Dec 01 2024 */
CROSSREFS
gf=(1+x^2*C^2)*C^m: A000782 (m=1), A071721 (m=2), A071722 (m=3), this sequence (m=4).
Cf. A000108.
Sequence in context: A291032 A006234 A094821 * A001559 A002311 A102349
KEYWORD
nonn,changed
AUTHOR
N. J. A. Sloane, Jun 06 2002
STATUS
approved