[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A077230 revision #15

A077230
Numerators of coefficients of series expansion of a certain integral in the theory of charged particle beams.
2
2, 1, -7, 5, -787, 763, -893209, 2885597, -1153151299, 261937547, -3997632829, 30141297349, -4101190700056349, 2948796705108299, -320676905674696783, 43360062621189833, -5848606947453449297743, 1963629536423819469923, -575654781675816234791672323
OFFSET
0,1
COMMENTS
The integral is Integrate[1/Sqrt[Log[y]],{y,1,x}]=Sqrt[Pi]*Erfi[Sqrt[Log[x]] with series expansion Sqrt[x-1]*Sum[c(i)*(x-1)^(i-1),{i,0,19}].
Numerator(c(n)) = A077230(n) (this sequence); denominator(c(n)) = A077231(n).
REFERENCES
M. Reiser, Theory and design of charged particle beams. J. Wiley, N.Y. 1994.
S. Humphries, Charged particle beams. J. Wiley, N.Y. 1990.
FORMULA
a(n) = numerator(sum(k=1..n, 4^(-k)*binomial(2*k,k)*sum(j=1..k, (j!*binomial(k,j)*(-1)^(j)*stirling1(n+j,j))/(n+j)!))), n>0, a(0)=2. - Vladimir Kruchinin, Feb 18 2015
a(n) = numerator(Sum_{k=0..n} binomial(1/2-n, k)*binomial(2*n-1/2, n-k)*Stirling2(n+k, k)*k!/((1-2*n)*(n+k)!)), n>0, a(0)=2. - Tani Akinari, Nov 05 2024
EXAMPLE
Series expansion is Sqrt[x-1]*(2 + 1/6 (x-1) -7/240 (x-1)^2+ 5/448 (x-1)^3 -...), hence a(0)=2, a(1)=1, a(2)=-7, a(3)=5, etc.
MATHEMATICA
a[n_] := If [n == 0, 2, Sum[4^(-k)*Binomial[2*k, k]*Sum[(j!*Binomial[k, j]*(-1)^j* StirlingS1[n+j, j])/(n+j)!, {j, 1, k}], {k, 1, n}]] // Numerator; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 18 2015, after Vladimir Kruchinin *)
PROG
(Maxima)
a(n):=if n=0 then 2 else num(sum(4^(-k)*binomial(2*k, k)*sum((j!*binomial(k, j)*(-1)^(j)*stirling1(n+j, j))/(n+j)!, j, 1, k), k, 1, n)); /* Vladimir Kruchinin, Feb 18 2015 */
(Maxima) a(n):=if n=0 then 2 else num(sum(binomial(1/2-n, k)*binomial(2*n-1/2, n-k)*stirling2(n+k, k)*k!/((1-2*n)*(n+k)!), k, 0, n)); /* Tani Akinari, Nov 05 2024 */
CROSSREFS
Cf. A077231.
Sequence in context: A342747 A365320 A356732 * A244238 A019668 A091700
KEYWORD
sign,frac
AUTHOR
Zak Seidov, Oct 31 2002
STATUS
editing