[go: up one dir, main page]

login
A378388 revision #5

A378388
Decimal expansion of the surface area of a tetrakis hexahedron with unit shorter edge length.
0
1, 1, 9, 2, 5, 6, 9, 5, 8, 7, 9, 9, 9, 8, 8, 7, 8, 3, 8, 0, 8, 4, 8, 9, 2, 6, 2, 3, 3, 2, 3, 3, 4, 7, 3, 2, 5, 5, 6, 8, 3, 2, 9, 7, 9, 1, 7, 9, 2, 8, 1, 3, 7, 1, 9, 6, 1, 1, 1, 4, 5, 1, 9, 7, 5, 5, 2, 2, 7, 7, 8, 2, 7, 0, 0, 6, 8, 2, 9, 2, 7, 9, 6, 8, 7, 6, 8, 7, 6, 8
OFFSET
2,3
COMMENTS
The tetrakis hexahedron is the dual polyhedron of the truncated octahedron.
LINKS
Eric Weisstein's World of Mathematics, Tetrakis Hexahedron.
FORMULA
Equals (16/3)*sqrt(5) = (16/3)*A002163 = 16*A208899.
EXAMPLE
11.925695879998878380848926233233473255683297917928,,,
MATHEMATICA
First[RealDigits[16*Sqrt[5]/3, 10, 100]] (* or *)
First[RealDigits[PolyhedronData["TetrakisHexahedron", "SurfaceArea"], 10, 100]]
CROSSREFS
Cf. A374359 (volume - 1), A010532 (inradius*10), A179587 (midradius + 1), A378389 (dihedral angle).
Cf. A377341 (surface area of a truncated octahedron with unit edge).
Sequence in context: A079059 A342574 A154838 * A082831 A085551 A316328
KEYWORD
nonn,cons,easy,new
AUTHOR
Paolo Xausa, Nov 27 2024
STATUS
editing